

Rapid Assessment Report for Site 18, Building 123 and Site 19, AST 3909

Zone G
Charleston Naval Complex
North Charleston, South Carolina

Southern Division Naval Facilities Engineering Command

Contract Number N62467-94-D-0888
Contract Task Order 0088

May 2000

FOR SITE 18, BUILDING 123 And SITE 19, AST 3909

ZONE G, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

COMPREHENSIVE LONG-TERM ENVIRONMENTAL ACTION NAVY (CLEAN) CONTRACT

Submitted to:
Southern Division
Naval Facilities Engineering Command
2155 Eagle Drive
North Charleston, South Carolina 29406

Submitted by:
Tetra Tech NUS
661 Andersen Drive
Foster Plaza 7
Pittsburgh, Pennsylvania 15220

CONTRACT NUMBER N62467-94-D-0888 CONTRACT TASK ORDER 0088

MAY 2000

PREPARED UNDER THE SUPERVISION OF:

PAUL CALLIGAN, P.G. TASK ORDER MANAGER

TETRA TECH NUS, INC.

TALLAHASSEE, FLORIDA

APPROVED FOR SUBMITTAL BY:

hobluski

DEBBIE WROBLEWSKI PROGRAM MANAGER TETRA TECH NUS, INC.

PITTSBURGH, PENNSYLVANIA

CERTIFICATION PAGE

I certify that the information contained in this report and on any attachments is true, accurate, and complete to the best of my knowledge, information, and belief.

No. 17132 BARGOAY D. SWALLING

Approved By:

Gregory D. Swanson, P.E. South Carolina Registration No. 17132

SCDHEC UST Site Rehabilitation Contractor Class I & II No. 24

TABLE OF CONTENTS

1.0 INTRODUCTION 1.1 1.1 SITE DESCRIPTION 1.1.1 1.2 SITE HISTORY 1.2 1.3 RECEPTOR SURVEY RESULTS 1.3 1.4 REGIONAL GEOLOGY AND HYDROGEOLOGY 1.4 2.0 ASSESSMENT INFORMATION 2.1 2.1 SITE-SPECIFIC GEOLOGY AND HYDROGEOLOGY 2.1 2.1.1 Site Geology 2.1 2.1.2 Site Hydrogeology 2.1 2.1.2 Site Hydrogeology 2.1 2.2 ASSESSMENT RESULTS 2.3 2.3 FIELD SCREENING ASSESSMENT 2.4 2.3.1 Soil Vapor Assessment 2.4 2.3.1 Soil Vapor Assessment 2.4 2.3.2 Soil Mobile Laboratory Results 2.5 2.3.3 Groundwater Mobile Laboratory Results 2.5 2.3.3 Groundwater Mobile Laboratory Results 2.5 2.4.1 Chemicals of Concern in Soil 2.6 2.4.2 CHEMICALS OF CONCERN IN SOIL AND GROUNDWATER 2.6 2.4.2 Chemicals of Concern in Groundwater 2.6 2.4.2 Chemicals of Concern in Groundwater 2.6 2.5 ANALYTICAL DATA. 2.7 2.6 AQUIFER CHARACTERISTICS AND EVALUATION 2.7 2.7 FATE AND TRANSPORT MODEL DESCRIPTION 2.9 2.8 PREDICTED MIGRATION AND ATTENUATION 0.7 0.7 CHEMICALS OF CONCERN	Section	<u>on</u>		Page
1.1 SITE DESCRIPTION 1-1 1.2 SITE HISTORY 1-2 1.3 RECEPTOR SURVEY RESULTS 1-3 1.4 REGIONAL GEOLOGY AND HYDROGEOLOGY 1-4 2.0 ASSESSMENT INFORMATION 2-1 2.1 SITE-SPECIFIC GEOLOGY AND HYDROGEOLOGY 2-1 2.1 Site Geology 2-1 2.1.1 Site Geology 2-1 2.2 ASSESSMENT RESULTS 2-3 2.3 FIELD SCREENING ASSESSMENT 2-3 2.3 FIELD SCREENING ASSESSMENT 2-4 2.3.1 Soil Wapor Assessment 2-4 2.3.2 Soil Mobile Laboratory Results 2-5 2.3.3 Groundwater Mobile Laboratory Results 2-5 2.3.1 Chemicals of Concern in Soil 2-6 2.4 CHEMICALS OF CONCERN IN SOIL AND GROUNDWATER 2-6 2.4 Chemicals of Concern in Groundwater 2-6 2.5 ANALYTICAL DATA 2-7 2.6 AULIFER CHARACTERISTICS AND EVALUATION 2-7 2.6 AULIFER CHARACTERISTICS AND EVALUATION 2-7 2.6 AU	1.0	INTR	ODUCTION	1-1
1.2 SITE HISTORY 1-2 1.3 RECEPTOR SURVEY RESULTS 1-3 1.4 REGIONAL GEOLOGY AND HYDROGEOLOGY 1-4 2.0 ASSESSMENT INFORMATION 2-1 2.1 SITE-SPECIFIC GEOLOGY AND HYDROGEOLOGY 2-1 2.1.1 Site declogy 2-1 2.1.2 Site Hydrogeology 2-1 2.2 ASSESSMENT RESULTS 2-3 2.3 FIELD SCREENING ASSESSMENT 2-4 2.3.1 Soil Vapor Assessment 2-4 2.3.2 Soil Mobile Laboratory Results 2-5 2.3.3 Groundwater Mobile Laboratory Results 2-5 2.3.3 Groundwater Mobile Laboratory Results 2-5 2.3.3 Groundwater Mobile Laboratory Results 2-5 2.3.1 Chemicals of Concern in Soil 2-6 2.4.1 Chemicals of Concern in Soil 2-6 2.4.2 Chemicals of Concern in Groundwater 2-6 2.5 ANALYTICAL DATA 2-7 2.6 AQUIFER CHARACTERISTICS AND EVALUATION 2-7 2.7 FATE AND TRANSPORT MODEL 3-6 3.0<		1.1	SITE DESCRIPTION	1-1
1.3 RECEPTOR SURVEY RESULTS 1-3 1.4 REGIONAL GEOLOGY AND HYDROGEOLOGY 1-4 2.0 ASSESSMENT INFORMATION 2-1 2.1 SITE-SPECIFIC GEOLOGY AND HYDROGEOLOGY 2-1 2.1.1 Site Geology 2-1 2.1.2 Site Hydrogeology 2-1 2.2 ASSESSMENT RESULTS 2-3 2.3 FIELD SCREENING ASSESSMENT 2-4 2.3.1 Soil Vapor Assessment 2-4 2.3.2 Soil Mobile Laboratory Results 2-5 2.3.3 Groundwater Mobile Laboratory Results 2-5 2.3.3 Groundwater Mobile Laboratory Results 2-5 2.3.3 Groundwater Mobile Laboratory Results 2-5 2.4.1 Chemicals of Concern in Soil 2-6 2.4.1 Chemicals of Concern in Soil 2-6 2.4.2 Chemicals of Concern in Groundwater 2-6 2.5 ANALYTICAL DATA 2-7 2.6 AQUIFER CHARACTERISTICS AND EVALUATION 2-7 2.7 FATE AND TRANSPORT MODEL DESCRIPTION 2-9 2.8 PREDICTED MIGRATION AND ATTENUATION 3-1 <td></td> <td>1.2</td> <td></td> <td>1-2</td>		1.2		1-2
2.0 ASSESSMENT INFORMATION 2-1 2.1 SITE-SPECIFIC GEOLOGY AND HYDROGEOLOGY 2-1 2.1.1 Site Geology 2-1 2.1.2 Site Hydrogeology 2-1 2.1.2 Site Hydrogeology 2-1 2.1.2 Site Hydrogeology 2-1 2.2 ASSESSMENT RESULTS 2-3 2.3 FIELD SCREENING ASSESSMENT 2-4 2.3.1 Soil Vapor Assessment 2-4 2.3.2 Soil Mobile Laboratory Results 2-5 2.3.3 Groundwater Mobile Laboratory Results 2-5 2.3.3 Groundwater Mobile Laboratory Results 2-5 2.3.3 Groundwater Mobile Laboratory Results 2-5 2.4.1 Chemicals of Concern in Soil 2-6 2.4.1 Chemicals of Concern in Groundwater 2-6 2.4.2 Chemicals of Concern in Groundwater 2-6 2.4.2 Chemicals of Concern in Groundwater 2-7 2-7 ANALYTICAL DATA. 2-7 2-7 ANALYTICAL DATA. 2-7 2-7 ATE AND TRANSPORT MODEL DESCRIPTION 2-9 2-8 PREDICTED MIGRATION AND ATTENUATION 2-9 2-8 PREDICTED MIGRATION AND ATTENUATION 3-1 COMPARISON OF ANALYTICAL RESULTS WITH RBSLS 3-1 3-2 SITE CONCEPTUAL EXPOSURE MODEL 3-1 3-3 SITE-SPECIFIC TALE EXPOSURE MODEL 3-1 3-3 3-3 On-Site Visitor 3-2 3-3 3-3 On-Site Visitor 3-3 3-3 3-3 On-Site Construction Worker 3-3 3-3 3-3 On-Site Resident 3-3 3-3 3-3 3-3 SITE-SPECIFIC TARGET LEVELS 3-3 3-3 SITE-SPECIFIC TARGET LEVELS 3-4 3-5 SSTLs for the Construction Worker (Groundwater) 3-6 3-7 3		1.3		1-3
2.1 SITE-SPECIFIC GEOLOGY AND HYDROGEOLOGY 2-1 2.1.1 Site Geology 2-1 2.1.2 Site Hydrogeology 2-1 2.2 ASSESSMENT RESULTS 2-3 2.3 FIELD SCREENING ASSESSMENT 2-4 2.3.1 Soil Vapor Assessment 2-4 2.3.2 Soil Mobile Laboratory Results 2-5 2.3.3 Groundwater Mobile Laboratory Results 2-5 2.3.3 Groundwater Mobile Laboratory Results 2-5 2.3.3 Groundwater Mobile Laboratory Results 2-5 2.4 CHEMICALS OF CONCERN IN SOIL AND GROUNDWATER 2-6 2.4.1 Chemicals of Concern in Groundwater 2-6 2.4.2 Chemicals of Concern in Groundwater 2-6 2.5 ANALYTICAL DATA 2-7 2.6 AULIFER CHARACTERISTICS AND EVALUATION 2-7 2.7 FATE AND TRANSPORT MODEL DESCRIPTION 2-9 2.8 PREDICTED MIGRATION AND ATTENUATION 2-10 3.0 TIER 2 EVALUATION 3-1 3.1 COMPARISON OF ANALYTICAL RESULTS WITH RBSLs 3-1 3.2 SITE CONCEPTUAL EXP		1.4	REGIONAL GEOLOGY AND HYDROGEOLOGY	1-4
2.1.1 Site Geology 2-1 2.1.2 Site Hydrogeology 2-1 2.2 ASSESSMENT RESULTS 2-3 2.3 FIELD SCREENING ASSESSMENT 2-4 2.3.1 Soil Vapor Assessment 2-4 2.3.2 Soil Mobile Laboratory Results 2-5 2.3.3 Groundwater Mobile Laboratory Results 2-5 2.4 CHEMICALS OF CONCERN IN SOIL AND GROUNDWATER 2-6 2.4.1 Chemicals of Concern in Soil 2-6 2.4.2 Chemicals of Concern in Groundwater 2-6 2.4.2 Chemicals of Concern in Groundwater 2-6 2.5 ANALYTICAL DATA 2-7 2.6 AQUIFER CHARACTERISTICS AND EVALUATION 2-7 2.7 FATE AND TRANSPORT MODEL DESCRIPTION 2-9 2.8 PREDICTED MIGRATION AND ATTENUATION 2-10 3.0 TIER 2 EVALUATION 3-1 3.1 COMPARISON OF ANALYTICAL RESULTS WITH RBSLs 3-1 3.2 SITE CONCEPTUAL EXPOSURE MODEL 3-1 3.3 EXPOSURE PATHWAY ANALYSIS 3-2 3.3.1 On-Site Commercial/Industrial Worker 3-2 3.3.2 On-Site Visitor 3-2 3.3.3 On-Site Construction Worker 3-3 3.3.4 IDENTIFICATION OF DATA REQUIREMENTS 3-3 3	2.0	ASS		
2.1.2 Site Hydrogeology 2-1		2.1		
2.2 ASSESSMENT RESULTS 2.3 2.3 FIELD SCREENING ASSESSMENT 2.4 2.3.1 Soil Vapor Assessment 2.4 2.3.2 Soil Mobile Laboratory Results 2.5 2.3.3 Groundwater Mobile Laboratory Results 2.5 2.4 CHEMICALS OF CONCERN IN SOIL AND GROUNDWATER 2.6 2.4.1 Chemicals of Concern in Soil 2.6 2.4.2 Chemicals of Concern in Groundwater 2.6 2.5 ANALYTICAL DATA 2.7 2.6 AQUIFER CHARACTERISTICS AND EVALUATION 2.7 2.7 FATE AND TRANSPORT MODEL DESCRIPTION 2.9 2.8 PREDICTED MIGRATION AND ATTENUATION 2-10 3.0 TIER 2 EVALUATION 3-1 3.1 COMPARISON OF ANALYTICAL RESULTS WITH RBSLs 3-1 3.2 SITE CONCEPTUAL EXPOSURE MODEL 3-1 3.3 EXPOSURE PATHWAY ANALYSIS 3-2 3.3.1 On-Site Commercial/Industrial Worker 3-2 3.3.3 On-Site Construction Worker 3-3 3.3.4 On-Site Resident 3-3 3.3.5 Off-Site Resident 3-3 3.5.1 SSTLs for the Construction Worker (Soil) 3-4 3.5.2 SSTLs for the Construction Worker (Groundwater) 3-4 3.5.4 Soil Leaching Pathway 3-7				
2.3 FIELD SCREENING ASSESSMENT 2-4 2.3.1 Soil Vapor Assessment 2-4 2.3.2 Soil Mobile Laboratory Results 2-5 2.3.3 Groundwater Mobile Laboratory Results 2-5 2.4 CHEMICALS OF CONCERN IN SOIL AND GROUNDWATER 2-6 2.4.1 Chemicals of Concern in Soil 2-6 2.4.2 Chemicals of Concern in Groundwater 2-6 2.5 ANALYTICAL DATA 2-7 2.6 AQUIFER CHARACTERISTICS AND EVALUATION 2-7 2.7 FATE AND TRANSPORT MODEL DESCRIPTION 2-9 2.8 PREDICTED MIGRATION AND ATTENUATION 2-10 3.0 TIER 2 EVALUATION 3-1 3.1 COMPARISON OF ANALYTICAL RESULTS WITH RBSLs 3-1 3.2 SITE CONCEPTUAL EXPOSURE MODEL 3-1 3.3 EXPOSURE PATHWAY ANALYSIS 3-2 3.3.1 On-Site Visitor 3-2 3.3.2 On-Site Construction Worker 3-3 3.3.4 On-Site Visitor 3-2 3.3.3 On-Site Construction Worker 3-3 3.5.1 SSTLs Resident 3-3 <				
2.3.1 Soil Vapor Assessment 2-4 2.3.2 Soil Mobile Laboratory Results 2-5 2.3.3 Groundwater Mobile Laboratory Results 2-5 2.4 CHEMICALS OF CONCERN IN SOIL AND GROUNDWATER 2-6 2.4.1 Chemicals of Concern in Soil 2-6 2.4.2 Chemicals of Concern in Groundwater 2-6 2.5 ANALYTICAL DATA 2-7 2.6 AQUIFER CHARACTERISTICS AND EVALUATION 2-7 2.7 FATE AND TRANSPORT MODEL DESCRIPTION 2-9 2.8 PREDICTED MIGRATION AND ATTENUATION 2-10 3.0 TIER 2 EVALUATION 3-1 3.1 COMPARISON OF ANALYTICAL RESULTS WITH RBSLs 3-1 3.2 SITE CONCEPTUAL EXPOSURE MODEL 3-1 3.3 EXPOSURE PATHWAY ANALYSIS 3-2 3.3.1 On-Site Visitor 3-2 3.3.2 On-Site Visitor 3-2 3.3.3 On-Site Resident 3-3 3.3.4 On-Site Resident 3-3 3.3.5 SITE-SPECIFIC TARGET LEVELS 3-4 3.5.1 SSTLs for the Construction Worker (Soil) 3-4 <td></td> <td></td> <td></td> <td></td>				
2.3.2 Soil Mobile Laboratory Results 2-5 2.3.3 Groundwater Mobile Laboratory Results 2-5 2.4.2 CHEMICALS OF CONCERN IN SOIL AND GROUNDWATER 2-6 2.4.1 Chemicals of Concern in Soil 2-6 2.4.2 Chemicals of Concern in Groundwater 2-6 2.5 ANALYTICAL DATA 2-7 2-6 AQUIFER CHARACTERISTICS AND EVALUATION 2-7 2.7 FATE AND TRANSPORT MODEL DESCRIPTION 2-9 2.8 PREDICTED MIGRATION AND ATTENUATION OF CHEMICALS OF CONCERN 2-10 3.1 COMPARISON OF ANALYTICAL RESULTS WITH RBSLs 3-1 3.2 SITE CONCEPTUAL EXPOSURE MODEL 3-1 3.3 EXPOSURE PATHWAY ANALYSIS 3-2 3.3.1 On-Site Commercial/Industrial Worker 3-2 3.3.2 On-Site Visitor 3-2 3.3.3 On-Site Construction Worker 3-3 3.3.4 On-Site Resident 3-3 3.3.5 Off-Site Resident 3-3 3.3.6 Surface Water 3-3 3.3.6 Surface Water 3-3 3.3.5 SITE-SPECIFIC TARGET LEVELS 3-4 3.5.1 SSTLs for the Construction Worker (Groundwater) 3-4 3.5.3 SSTLs Protective of Surface Water 3-6 3.5.4 Soil Leaching Pathway 3-7 3.6 RECOMMENDATIONS 3-7		2.3		
2.3.3 Groundwater Mobile Laboratory Results 2-5 2.4 CHEMICALS OF CONCERN IN SOIL AND GROUNDWATER 2-6 2.4.1 Chemicals of Concern in Soil 2-6 2.4.2 Chemicals of Concern in Groundwater 2-6 2.4.2 Chemicals of Concern in Groundwater 2-7 2.5 ANALYTICAL DATA 2-7 2.6 AQUIFER CHARACTERISTICS AND EVALUATION 2-7 2.7 FATE AND TRANSPORT MODEL DESCRIPTION 2-9 2.8 PREDICTED MIGRATION AND ATTENUATION OF CHEMICALS OF CONCERN 2-10 3.0 TIER 2 EVALUATION 3-1 3.1 COMPARISON OF ANALYTICAL RESULTS WITH RBSLS 3-1 3.2 SITE CONCEPTUAL EXPOSURE MODEL 3-1 3.3 EXPOSURE PATHWAY ANALYSIS 3-2 3.3.1 On-Site Commercial/Industrial Worker 3-2 3.3.2 On-Site Visitor 3-2 3.3.3 On-Site Construction Worker 3-3 3.3.4 On-Site Resident 3-3 3.3.5 Off-Site Resident 3-3 3.3.6 Surface Water 3-3 3.5 SITE-SPECIFIC TARGET LEVELS 3-4 3.5.1 SSTLs for the Construction Worker (Groundwater) 3-4 3.5.2 SSTLs for the Construction Worker (Groundwater) 3-4 3.5.3 SSTLs Protective of Surface Water 3-6 3.5.4 Soil Leaching Pathway 3-7 3.6 RECOMMENDATIONS 3-7			•	_
2.4 CHEMICALS OF CONCERN IN SOIL AND GROUNDWATER 2-6 2.4.1 Chemicals of Concern in Soil 2-6 2.4.2 Chemicals of Concern in Groundwater 2-6 2.5 ANALYTICAL DATA 2-7 2.6 AQUIFER CHARACTERISTICS AND EVALUATION 2-7 2.7 FATE AND TRANSPORT MODEL DESCRIPTION 2-9 2.8 PREDICTED MIGRATION AND ATTENUATION 2-10 3.0 TIER 2 EVALUATION 3-1 3.1 COMPARISON OF ANALYTICAL RESULTS WITH RBSLs 3-1 3.2 SITE CONCEPTUAL EXPOSURE MODEL 3-1 3.3 EXPOSURE PATHWAY ANALYSIS 3-2 3.3.1 On-Site Commercial/Industrial Worker 3-2 3.3.2 On-Site Visitor 3-2 3.3.3 On-Site Construction Worker 3-3 3.3.4 On-Site Resident 3-3 3.3.5 Off-Site Resident 3-3 3.3.1 DENTIFICATION OF DATA REQUIREMENTS 3-3 3.5 SITE-SPECIFIC TARGET LEVELS 3-4 3.5.1 SSTLs for the Construction Worker (Soil) 3-4 3.5.2 SSTLs for the Construction Worker (Groundwater) 3-4 3.5.3 SSTLs Protective of Surface Water 3-6 3.5.4 Soil Leaching Pathway 3-7 3.6 RECOMMENDATIONS 3-7			•	
2.4.1 Chemicals of Concern in Soil 2-6 2.4.2 Chemicals of Concern in Groundwater 2-6 2.5 ANALYTICAL DATA 2-7 2.6 AQUIFER CHARACTERISTICS AND EVALUATION 2-7 2.7 FATE AND TRANSPORT MODEL DESCRIPTION 2-9 2.8 PREDICTED MIGRATION AND ATTENUATION 2-10 3.0 TIER 2 EVALUATION 3-1 3.1 COMPARISON OF ANALYTICAL RESULTS WITH RBSLs 3-1 3.2 SITE CONCEPTUAL EXPOSURE MODEL 3-1 3.3 EXPOSURE PATHWAY ANALYSIS 3-2 3.3.1 On-Site Commercial/Industrial Worker 3-2 3.3.3 On-Site Construction Worker 3-3 3.3.4 On-Site Resident 3-3 3.3.5 Off-Site Resident 3-3 3.3.6 Surface Water 3-3 3.5.1 SSTLs for the Construction Worker (Soil) 3-4 3.5.2 SSTLs for the Construction Worker (Groundwater) 3-4 3.5.3 SSTLs Protective of Surface Water 3-6 3.5.4 Soil Leaching Pathway 3-7 3.6 RECOMMENDATIONS 3-7			•	
2.4.2 Chemicals of Concern in Groundwater 2-6 2.5 ANALYTICAL DATA 2-7 2.6 AQUIFER CHARACTERISTICS AND EVALUATION 2-7 2.7 FATE AND TRANSPORT MODEL DESCRIPTION 2-9 2.8 PREDICTED MIGRATION AND ATTENUATION 0F CHEMICALS OF CONCERN 0 OF CHEMICALS OF CONCERN 2-10 3.0 TIER 2 EVALUATION 3-1 3.1 COMPARISON OF ANALYTICAL RESULTS WITH RBSLs 3-1 3.2 SITE CONCEPTUAL EXPOSURE MODEL 3-1 3.3 EXPOSURE PATHWAY ANALYSIS 3-2 3.3.1 On-Site Commercial/Industrial Worker 3-2 3.3.2 On-Site Visitor 3-2 3.3.3 On-Site Construction Worker 3-3 3.3.4 On-Site Resident 3-3 3.3.5 Off-Site Resident 3-3 3.3.6 Surface Water 3-3 3.5.1 SSTLs Resident 3-3 3.5.2 SSTLs for the Construction Worker (Soil) 3-4 3.5.3 SSTLs for the Construction Worker (Groundwater) 3-4 3.5.4 Soil Leaching Pathway 3-7 3.6 RECOMMENDATIONS 3-7		2.4		
2.5 ANALYTICAL DATA. 2-7 2.6 AQUIFER CHARACTERISTICS AND EVALUATION. 2-7 2.7 FATE AND TRANSPORT MODEL DESCRIPTION. 2-9 2.8 PREDICTED MIGRATION AND ATTENUATION. 0F CHEMICALS OF CONCERN. 2-10 3.0 TIER 2 EVALUATION. 3-1 3.1 COMPARISON OF ANALYTICAL RESULTS WITH RBSLs. 3-1 3.2 SITE CONCEPTUAL EXPOSURE MODEL. 3-1 3.3 EXPOSURE PATHWAY ANALYSIS. 3-2 3.3.1 On-Site Commercial/Industrial Worker. 3-2 3.3.2 On-Site Visitor. 3-2 3.3.3 On-Site Resident. 3-3 3.3.4 On-Site Resident. 3-3 3.3.5 Off-Site Resident. 3-3 3.3.6 Surface Water. 3-3 3.5 SITE-SPECIFIC TARGET LEVELS. 3-4 3.5.1 SSTLs for the Construction Worker (Soil). 3-4 3.5.2 SSTLs for the Construction Worker (Groundwater). 3-4 3.5.3 SSTLs Protective of Surface Water. 3-6 3.5.4 Soil Leaching Pathway. 3-7 3.6 RECOMMEND				
2.6 AQUIFER CHARACTERISTICS AND EVALUATION 2-7 2.7 FATE AND TRANSPORT MODEL DESCRIPTION 2-9 2.8 PREDICTED MIGRATION AND ATTENUATION 0 OF CHEMICALS OF CONCERN 2-10 3.0 TIER 2 EVALUATION 3-1 3.1 COMPARISON OF ANALYTICAL RESULTS WITH RBSLs 3-1 3.2 SITE CONCEPTUAL EXPOSURE MODEL 3-1 3.3 EXPOSURE PATHWAY ANALYSIS 3-2 3.3.1 On-Site Commercial/Industrial Worker 3-2 3.3.2 On-Site Visitor 3-2 3.3.3 On-Site Construction Worker 3-3 3.3.4 On-Site Resident 3-3 3.3.5 Off-Site Resident 3-3 3.3.6 Surface Water 3-3 3.5 SITE-SPECIFIC TARGET LEVELS 3-4 3.5.1 SSTLs for the Construction Worker (Soil) 3-4 3.5.2 SSTLs for the Construction Worker (Groundwater) 3-4 3.5.3 SSTLs Protective of Surface Water 3-6 3.5.4 Soil Leaching Pathway 3-7 3.6 RECOMMENDATIONS 3-7				
2.7 FATE AND TRANSPORT MODEL DESCRIPTION 2-9 2.8 PREDICTED MIGRATION AND ATTENUATION 0F CHEMICALS OF CONCERN 2-10 3.0 TIER 2 EVALUATION 3-1 3.1 COMPARISON OF ANALYTICAL RESULTS WITH RBSLS 3-1 3.2 SITE CONCEPTUAL EXPOSURE MODEL 3-1 3.3 EXPOSURE PATHWAY ANALYSIS 3-2 3.3.1 On-Site Commercial/Industrial Worker 3-2 3.3.2 On-Site Visitor 3-2 3.3.3 On-Site Resident 3-3 3.3.4 On-Site Resident 3-3 3.3.5 Off-Site Resident 3-3 3.3.6 Surface Water 3-3 3.4 IDENTIFICATION OF DATA REQUIREMENTS 3-3 3.5 SITE-SPECIFIC TARGET LEVELS 3-4 3.5.1 SSTLs for the Construction Worker (Soil) 3-4 3.5.2 SSTLs for the Construction Worker (Groundwater) 3-4 3.5.4 Soil Leaching Pathway 3-7 3.6 RECOMMENDATIONS 3-7				
2.8 PREDICTED MIGRATION AND ATTENUATION OF CHEMICALS OF CONCERN 2-10 3.0 TIER 2 EVALUATION. 3-1 3.1 COMPARISON OF ANALYTICAL RESULTS WITH RBSLs 3-1 3.2 SITE CONCEPTUAL EXPOSURE MODEL 3-1 3.3 EXPOSURE PATHWAY ANALYSIS 3-2 3.3.1 On-Site Commercial/Industrial Worker 3-2 3.3.2 On-Site Visitor 3-2 3.3.3 On-Site Construction Worker 3-3 3.3.4 On-Site Resident 3-3 3.3.5 Off-Site Resident 3-3 3.3.6 Surface Water 3-3 3.4 IDENTIFICATION OF DATA REQUIREMENTS 3-3 3.5 SITE-SPECIFIC TARGET LEVELS 3-4 3.5.1 SSTLs for the Construction Worker (Soil) 3-4 3.5.2 SSTLs for the Construction Worker (Groundwater) 3-4 3.5.3 SSTLs Protective of Surface Water 3-6 3.5.4 Soil Leaching Pathway 3-7 3.6 RECOMMENDATIONS 3-7				
3.0 TIER 2 EVALUATION				2-9
3.0 TIER 2 EVALUATION		2.8		0.40
3.1 COMPARISON OF ANALYTICAL RESULTS WITH RBSLs 3-1 3.2 SITE CONCEPTUAL EXPOSURE MODEL 3-1 3.3 EXPOSURE PATHWAY ANALYSIS 3-2 3.3.1 On-Site Commercial/Industrial Worker 3-2 3.3.2 On-Site Visitor 3-2 3.3.3 On-Site Construction Worker 3-3 3.3.4 On-Site Resident 3-3 3.3.5 Off-Site Resident 3-3 3.3.6 Surface Water 3-3 3.4 IDENTIFICATION OF DATA REQUIREMENTS 3-3 3.5 SITE-SPECIFIC TARGET LEVELS 3-4 3.5.1 SSTLs for the Construction Worker (Soil) 3-4 3.5.2 SSTLs for the Construction Worker (Groundwater) 3-4 3.5.3 SSTLs Protective of Surface Water 3-6 3.5.4 Soil Leaching Pathway 3-7 3.6 RECOMMENDATIONS 3-7			OF CHEMICALS OF CONCERN	2-10
3.2 SITE CONCEPTUAL EXPOSURE MODEL 3-1 3.3 EXPOSURE PATHWAY ANALYSIS 3-2 3.3.1 On-Site Commercial/Industrial Worker 3-2 3.3.2 On-Site Visitor 3-2 3.3.3 On-Site Construction Worker 3-3 3.3.4 On-Site Resident 3-3 3.3.5 Off-Site Resident 3-3 3.3.6 Surface Water 3-3 3.4 IDENTIFICATION OF DATA REQUIREMENTS 3-3 3.5 SITE-SPECIFIC TARGET LEVELS 3-4 3.5.1 SSTLs for the Construction Worker (Soil) 3-4 3.5.2 SSTLs for the Construction Worker (Groundwater) 3-4 3.5.3 SSTLs Protective of Surface Water 3-6 3.5.4 Soil Leaching Pathway 3-7 3.6 RECOMMENDATIONS 3-7	3.0			
3.3 EXPOSURE PATHWAY ANALYSIS 3-2 3.3.1 On-Site Commercial/Industrial Worker 3-2 3.3.2 On-Site Visitor 3-2 3.3.3 On-Site Construction Worker 3-3 3.3.4 On-Site Resident 3-3 3.3.5 Off-Site Resident 3-3 3.3.6 Surface Water 3-3 3.4 IDENTIFICATION OF DATA REQUIREMENTS 3-3 3.5 SITE-SPECIFIC TARGET LEVELS 3-4 3.5.1 SSTLs for the Construction Worker (Soil) 3-4 3.5.2 SSTLs for the Construction Worker (Groundwater) 3-4 3.5.3 SSTLs Protective of Surface Water 3-6 3.5.4 Soil Leaching Pathway 3-7 3.6 RECOMMENDATIONS 3-7				
3.3.1 On-Site Commercial/Industrial Worker 3-2 3.3.2 On-Site Visitor 3-2 3.3.3 On-Site Construction Worker 3-3 3.3.4 On-Site Resident 3-3 3.3.5 Off-Site Resident 3-3 3.3.6 Surface Water 3-3 3.4 IDENTIFICATION OF DATA REQUIREMENTS 3-3 3.5 SITE-SPECIFIC TARGET LEVELS 3-4 3.5.1 SSTLs for the Construction Worker (Soil) 3-4 3.5.2 SSTLs for the Construction Worker (Groundwater) 3-4 3.5.3 SSTLs Protective of Surface Water 3-6 3.5.4 Soil Leaching Pathway 3-7 3.6 RECOMMENDATIONS 3-7		_		-
3.3.2 On-Site Visitor 3-2 3.3.3 On-Site Construction Worker 3-3 3.3.4 On-Site Resident 3-3 3.3.5 Off-Site Resident 3-3 3.3.6 Surface Water 3-3 3.4 IDENTIFICATION OF DATA REQUIREMENTS 3-3 3.5 SITE-SPECIFIC TARGET LEVELS 3-4 3.5.1 SSTLs for the Construction Worker (Soil) 3-4 3.5.2 SSTLs for the Construction Worker (Groundwater) 3-4 3.5.3 SSTLs Protective of Surface Water 3-6 3.5.4 Soil Leaching Pathway 3-7 3.6 RECOMMENDATIONS 3-7		3.3		
3.3.3 On-Site Construction Worker 3-3 3.3.4 On-Site Resident 3-3 3.3.5 Off-Site Resident 3-3 3.3.6 Surface Water 3-3 3.4 IDENTIFICATION OF DATA REQUIREMENTS 3-3 3.5 SITE-SPECIFIC TARGET LEVELS 3-4 3.5.1 SSTLs for the Construction Worker (Soil) 3-4 3.5.2 SSTLs for the Construction Worker (Groundwater) 3-4 3.5.3 SSTLs Protective of Surface Water 3-6 3.5.4 Soil Leaching Pathway 3-7 3.6 RECOMMENDATIONS 3-7				
3.3.4 On-Site Resident				
3.3.5 Off-Site Resident 3-3 3.3.6 Surface Water 3-3 3.4 IDENTIFICATION OF DATA REQUIREMENTS 3-3 3.5 SITE-SPECIFIC TARGET LEVELS 3-4 3.5.1 SSTLs for the Construction Worker (Soil) 3-4 3.5.2 SSTLs for the Construction Worker (Groundwater) 3-4 3.5.3 SSTLs Protective of Surface Water 3-6 3.5.4 Soil Leaching Pathway 3-7 3.6 RECOMMENDATIONS 3-7				
3.3.6 Surface Water				
3.4 IDENTIFICATION OF DATA REQUIREMENTS 3-3 3.5 SITE-SPECIFIC TARGET LEVELS 3-4 3.5.1 SSTLs for the Construction Worker (Soil) 3-4 3.5.2 SSTLs for the Construction Worker (Groundwater) 3-4 3.5.3 SSTLs Protective of Surface Water 3-6 3.5.4 Soil Leaching Pathway 3-7 3.6 RECOMMENDATIONS 3-7				
3.5 SITE-SPECIFIC TARGET LEVELS 3-4 3.5.1 SSTLs for the Construction Worker (Soil) 3-4 3.5.2 SSTLs for the Construction Worker (Groundwater) 3-4 3.5.3 SSTLs Protective of Surface Water 3-6 3.5.4 Soil Leaching Pathway 3-7 3.6 RECOMMENDATIONS 3-7				
3.5.1 SSTLs for the Construction Worker (Soil)		0. ∓		
3.5.2 SSTLs for the Construction Worker (Groundwater)		3.5		
3.5.3 SSTLs Protective of Surface Water				
3.5.4 Soil Leaching Pathway				
3.6 RECOMMENDATIONS				
			-	
4.0 REFERENCES		3.6	RECOMMENDATIONS	3-7
	4.0	pcci	EDENICES	/1 1

TABLE OF CONTENTS (Continued)

TABLES

- 1 GROUNDWATER ELEVATIONS
- 2 GROUNDWATER FIELD MEASUREMENTS
- 3 GROUNDWATER NATURAL ATTENUATION FIELD MEASUREMENTS
- 4 SUMMARY OF OVA SOIL SCREENING RESULTS
- 5 SUMMARY OF MOBILE LABORATORY SCREENING RESULTS FOR SOIL
- 6 SUMMARY OF MOBILE LABORATORY SCREENING RESULTS FOR GROUNDWATER
- 7 SUMMARY OF FIXED-BASE LABORATORY ANALYTICAL RESULTS FOR CHEMICALS OF CONCERN IN SOIL
- 8 SUMMARY OF FIXED-BASE LABORATORY ANALYTICAL RESULTS FOR CHEMICALS OF CONCERN IN GROUNDWATER
- 9 COMPARISON OF MAXIMUM CONCENTRATIONS TO RBSLs
- 10 EXPOSURE PATHWAY ASSESSMENT CURRENT LAND USE
- 11 EXPOSURE PATHWAY ASSESSMENT FUTURE LAND USE
- 12 COMPARISON OF MAXIMUM GROUNDWATER CONCENTRATIONS TO SSTLs

FIGURES

- 1 SITE LOCATION MAP
- 2 SITE VICINITY MAP
- 3 SITE PLAN AND SAMPLING LOCATIONS
- 4 GEOLOGIC CROSS SECTION A A'
- 5 GEOLOGIC CROSS SECTION B B'
- **6 GROUNDWATER POTENTIOMETRIC MAP**
- 7 SOIL BENZENE CONCENTRATION MAP
- 8 SOIL NAPHTHALENE CONCENTRATION MAP
- 9 GROUNDWATER BENZENE CONCENTRATION MAP
- 10 GROUNDWATER NAPHTHALENE CONCENTRATION MAP
- 11 PREDICTED 10-YEAR & 20-YEAR MIGRATION

APPENDICES

- A UNDERGROUND STORAGE TANK ASSESSMENT REPORTS UST 123, AST 3909
- B GEOLOGIC BORING LOGS
- C FIELD SAMPLING DATA SHEETS
- D SOIL AND GROUNDWATER LABORATORY ANALYTICAL DATA
- E AQUIFER CHARACTERIZATION GRAPHS
- F RBCA CALCULATIONS

EXECUTIVE SUMMARY

Tetra Tech NUS, Inc. (TtNUS) has completed a Rapid Assessment (RA) for Sites 18 and 19 which includes an underground storage tank (UST) and aboveground storage tank (AST) system for Building 123 at Charleston Naval Complex (CNC) Zone G, in North Charleston, South Carolina. The UST provided heating oil to the building and the AST stored diesel fuel for the building's steam generator. The RA was performed under the direction of the South Carolina Department of Health and Environmental Control's (SCDHEC's) Rapid Assessment Plan and approval letter dated November 4, 1998.

TtNUS performed the following actions during the RA:

- Reviewed available Navy documents to identify potential sources and receptors for petroleum hydrocarbons in the vicinity, to evaluate public and private potable wells, to locate utilities line areas, to locate nearby surface water bodies, and to determine surface hydrology and drainage;
- Reviewed the previously prepared Underground Storage Tank Assessment Report for UST 123 and AST 3909 to determine boring locations and monitoring well placements;
- Conducted site survey to identify utilities and to construct a site plan;
- Performed direct push investigation, collected soil and groundwater samples for field screening of total petroleum hydrocarbons using an organic vapor analyzer;
- Collected groundwater samples from direct push borings for mobile lab screening analysis for benzene, toluene, ethyl benzene, total xylenes (BTEX), and diesel range organics;
- Installed 6 temporary piezometers;
- Installed shallow permanent monitoring wells to approximately 13 feet below land surface (bls) and one vertical delineation wells to approximately 33 feet bls;
- Collected groundwater samples from the permanent monitoring wells for laboratory analysis of analyzed for BTEX, methyl tert-butyl ether (MTBE), and naphthalene using U.S. Environrmental Protection Agency (USEPA) Method 8260 and polynuclear aromatic hydrocarbons (PAHs) using USEPA Method 8270;
- Collected soil samples for laboratory analysis of BTEX and naphthalene using USEPA
 Method 8260, PAHs using USEPA Method 8270, total organic carbon (TOC) using
 USEPA Method 415.1, total recoverable petroleum hydrocarbon (TRPH) using USEPA
 Method 9071, and grain size analysis using sieve and hydrometer methods; and

 Surveyed monitoring well and piezometer top of casing elevations and collected depth to groundwater measurements to evaluate the groundwater flow direction.

Conclusion

One groundwater-elevation-monitoring event was conducted at the site on September 9, 1999. Free product was detected in existing monitoring well FDS01A, where the product thickness was 3.10 feet. Free product was not detected in any of the remaining wells. One groundwater sampling event was conducted on September 9, 1999. Dissolved chemicals of concern (CoCs) were detected in the vicinity of Building 123 and AST 3909. The maximum concentrations were: benzene (32 ug/L) and naphthalene (1,400 ug/L), which are above (SCDHEC's) Risk Based Screening Levels (RBSL) for benzene and naphthalene.

Soil samples were collected between May 3 and May 13, 1999, and analyzed for BTEX and PAHs by a fix-based laboratory. Benzene and naphthalene soil concentrations were reported above SCDHEC's Risk Based Screening Levels for sandy soils. Construction worker site-specific target levels (SSTLs) were calculated to evaluate the exposure pathway for soil CoCs. The maximum concentrations of benzene (0.9 mg/kg) and naphthalene (7.25 mg/kg) in soil do not exceed the RBSLs.

The downgradient extent of hydrocarbon impact to groundwater has not been delineated. Free product was present in monitoring well FDS01A with a thickness of 3.10 feet in September 1999. Construction worker and surface water site-specific target levels (SSTLs) were calculated to evaluate the exposure pathway for groundwater CoCs. Calculated concentrations of benzene (0.313 mg/L) and naphthalene (23.35 mg/L) in groundwater in equilibrium with fuel oil exceed the site SSTLs protective of both the construction worker and the Cooper River.

Recommendation

The theoretical concentrations of benzene and naphthalene in groundwater, assuming equilibration with free product, were found to exceed the SSTLs for the construction worker and for the Cooper River. Because the SSTLs are exceeded, removal of free product will be necessary to protect the identified receptors. However, the concentrations of CoCs detected in groundwater to date indicate that once free product is removed only the concentration of naphthalene in groundwater will slightly exceed the SSTLs for the Cooper River. Therefore, following free-product removal, an Intrinsic Corrective Action is recommended for the site (pending the results of groundwater sampling after free product removal.

1.0 INTRODUCTION

Site 18 is a closed underground storage tank (UST) system which stored waste oil from an oil/water separator located adjacent to the auxillary boiler house at Building 123 at the Charleston Naval Complex (CNC), Zone G, in Charleston, South Carolina. Site 19 is a closed aboveground storage tank (AST) system which supplied fuel oil to the boilers of Building 123 at the Charleston Naval Complex (CNC), Zone G, in Charleston, South Carolina. This Rapid Assessment (RA) for the two adjoining sites was performed by Tetra Tech NUS, Inc.'s (TtNUS's) Tallahassee, Florida, office, located at 1401 Oven Park Drive, Suite 102, Tallahassee, Florida 32312 (telephone number 850-385-9899) on behalf of the U.S. Navy Southern Division (SOUTHDIV) Naval Facilities Engineering Command (NAVFAC), 2155 Eagle Drive, North Charleston, South Carolina 29406 (telephone number 843-820-7307). Authorization to conduct the RA for the site was issued by NAVFAC under Contract Task Order (CTO) 0088. The RA was performed under the direction of the South Carolina Department of Health and Environmental Control's (SCDHEC's) Rapid Assessment Plan approval letter dated November 4, 1998.

Fieldwork necessary to complete the RA for Site 18 and Site 19 was performed from April 27 to September 9, 1999, by TtNUS.

1.1 SITE DESCRIPTION

The CNC is in the city of North Charleston, on the west bank of the Cooper River in Charleston County, South Carolina, as shown on Figure 1. This installation consists of two major areas: an undeveloped dredge materials area on the east bank of the Cooper River on Daniel Island in Berkley County, and a developed area on the west bank of the Cooper River. The developed portion of the base is on the peninsula bounded on the west by the Ashley River and on the east by the Cooper River. The site is located within the developed portion of the base as shown on Figure 2.

The area surrounding CNC is "mature urban," having long been developed with commercial, industrial, and residential land use. Commercial areas are primarily west of CNC; industrial areas are primarily to the north of the base along Shipyard Creek. A site vicinity map, which exhibits adjacent properties and structures, vicinity roads, and current utilities is included as Figure 2.

Building 123 was used as a boiler house that supplied steam to ships and parts of the Naval base. It was constructed in 1977 on previously undeveloped land. UST 123 was a 1,000-gallon steel tank which

stored waste oil from an oil/water separator. The UST was installed in 1977 and was an underground tank placed directly into the soil.

The UST was located on the north side of Building 123 (Figure 3). It is unknown when the UST system was last in operation [Supervisor of Ship Building, Conversion and Repair, United States Navy, Portsmouth, Virginia, Environmental Detachment Charleston (SPORTENDETCHASN), 1998].

AST 3909 was a 200,000-gallon capacity, steel fuel oil tank which supplied fuel oil to the auxillary boiler in Building 123. The AST was installed in 1964 on a concrete foundation filled with 18 inches of sand. The AST was located approximately 160 feet east of Building 123. It is unknown when the AST system was last in operation [Supervisor of Ship Building, Conversion and Repair, United States Navy, Portsmouth, Virginia, Environmental Detachment Charleston (SPORTENDETCHASN), 1998].

1.2 SITE HISTORY

In 1901, the U.S. Navy acquired 2,250 acres near Charleston to build a shipyard and the first naval officer was assigned duty in early 1902. Subsequently, buildings and a dry dock were constructed in the Naval Yard. The dry dock was completed in 1909 along with several other brick buildings and the main power plant, which is still in operation today. The first ship was placed in dry dock and work began on fleet vessels in 1910. World War I brought about an expansion of the yards, facilities, land area, and work force. The yard built two gunboats, several submarine chasers, and tugs in addition to performing repairs and other services to the fleet. In 1933, building activity had increased principally in construction of several Coast Guard tugs, a Coast Guard cutter, and a Navy gunboat, creating the need for more facilities and a much larger work force. In 1943 civilian work force peaked with almost 26,000 employees divided among three daily shifts. In 1956, construction began on piers, barracks, and buildings for mine warfare ships and personnel. Later in the decade, the facility became a major home port for combat ships and submarines of the U.S. Atlantic Fleet [Ensafe/Allan & Hoshall, Inc. (E/A&H), 1996].

In 1993, major cuts in defense spending, as a result in part to the end of the Cold War, caused CNC to be added to the list of bases scheduled for closure under the Defense Base Realignment and Closure Act (BRAC). BRAC regulates the closure and transition of property back to the community (E/A&H, 1996). With the scheduled closure of the base, operations were scaled back and environmental cleanup proceeded to make the property available for redevelopment after closure. As part of the environmental cleanup process, the UST at Building 123 was removed and a tank closure completed on June 20, 1996. The AST at Building 123 was removed and the tank closure was completed on February 6, 1998.

UST 123 and AST 3909 were removed, cleaned, and recycled as scrap metal. At the time of the UST and AST removals, no corrosion, pitting, or holes were found in the tanks. The UST and AST system piping was constructed of steel and ran from the UST and AST to Building 123. The piping from the UST and the AST to the building were removed during the closure (SPORTENDETCHASN, 1998).

During the removal of the tanks, petroleum contamination and/or odors were identified in excavated soils and in soil samples collected during the tank removal. The Underground Storage Tank Assessment Reports for UST 123 and AST 3909 are included in Appendix A.

1.3 RECEPTOR SURVEY RESULTS

A survey of the site vicinity was conducted by TtNUS personnel to identify potential receptors for petroleum hydrocarbon contamination. The site plan (Figure 2) depicts the public utilities located within 250 feet of the former Building 123 study area. Specific information concerning the depth of utilities below land surface is currently unavailable. However, according to facility personnel, utility lines are typically located approximately 2 to 6 feet below land surface (bls) (SPORTENVDETCHASN, 1999). The following utility receptors were located:

- Sanitary sewer, water utility: Sanitary sewer lines run parallel to Hobson Avenue and the shore of the Cooper River. The sanitary sewer lines servicing Building 123 run along the west side of the building with an auxillary line which exits from the north side of the building. These lines connect with the lines along Hobson Avenue and the Cooper River. The sanitary sewer lines that run along the Cooper River pass within 75 feet of the north side of AST 3909. Water lines run parallel with Hobson Avenue and along the piers extending into the Cooper River. The water lines enter Building 123 on the south and west sides of the building. The water line along the west side of Building 123 extends from the lines along Hobson Avenue to the piers. The nearest lines are the water and sanitary sewer lines which enter and exit the west side of Building 123.
- Electrical utility, gas utility, compressed air utility, saltwater utility: Subsurface electrical lines run parallel to the shore of the Cooper River, approximately 100 feet north of Building 123. The subsurface electrical line connects to overhead utility line located northeast of Building 123. No gas utilities were identified within 250 feet of UST 123. Compressed air utilities originate from primary lines which run parallel to the shore of the Cooper River, approximately 80 feet north of Building 123. Feeder lines connect this compressed air main with Building 123 along the north side of the building.

Salt water lines run parallel to the shore of the Cooper River, approximately 35 feet north of Building 123

According to the Final RCRA Facility Investigation Report for Zone G (E/A&H, 1996) a survey of groundwater users within a 7-mile radius of CNC was conducted by the South Carolina Water Resources Commission to ascertain the extent of any shallow groundwater usage. Results of the water use investigation revealed that no drinking water wells, which utilize the shallow aquifer, are located within a 4-mile radius of CNC. Irrigation wells were not identified within 1,000 feet of the site. Numerous monitoring wells are located within 1,000 feet of the site. The nearest surface water body to UST 123 and AST 3909 is the Cooper River located approximately 150 feet to the northeast.

There are no city, county, or state zoning ordinances as the property (CNC) is currently owned by the federal government. Information concerning zoning ordinances was obtained from the SOUTHDIV Remedial Project Manager located at 2155 Eagle Drive, North Charleston, South Carolina 29406 (telephone number 843-820-7307).

1.4 REGIONAL GEOLOGY AND HYDROGEOLOGY

CNC is located in Charleston County, South Carolina, in the Lower South Carolina Coastal Plain Physiographic Province on the Cooper River side of the Charleston Peninsula. The peninsula is formed by the confluence of the Cooper and Ashley Rivers. Topography in the area is typical of the South Carolina lower coastal plain and is characterized by having low-relief plains broken by the meandering streams and rivers, flowing toward the coast past occasional marine terrace escarpments (E/A&H, 1996).

The geology of the Charleston area is typical of the southern Atlantic Coastal Plain. Cretaceous-age and younger sediments thicken seaward and are underlain by older igneous and metamorphic basement rock. Surface exposures consist of Recent or Pleistocene sands, silts, and clays of high organic content referred to as the Wando Formation (E/A&H, 1996). Underlying the Wando Formation, increasing with age, are the Oligocene-age Cooper Group and the Eocene-age Santee Limestone. The Cooper Group is comprised of the Parkers Ferry, Ashley, and Harleyville Formations. The formation of particular importance in the Cooper Group is the Ashley Formation, which was formerly referred to as the Cooper Marl in most regional geologic literature. In more recent geologic nomenclature, the name "Cooper" has been given to a group of formations including the Ashley Formation, a pale green to olive-brown, sandy phosphoric limestone or marl, which is locally muddy and/or sandy. The Ashley Formation in the vicinity of Charleston is encountered at a depth of approximately 30 to 70 feet bls.

The top of the Ashley Formation has been reported to be associated with an erosional basin and the entire Cooper Unit, including the Ashley Formation, is indicated to be approximately 300 feet thick (E/A&H, 1996).

Groundwater occurs under water table or poorly confined conditions within the recent or Pleistocene deposits overlying the Ashley Formation of the Cooper Group. Transmissivity in the Pleistocene aquifer is generally less than 1,000 feet per day and well yields are variable, ranging from 0 to 200 gallons per minute (gpm). This groundwater contains high concentrations of iron and is commonly acidic at shallow depths (E/A&H, 1996).

The Cooper Group is hydrogeologically significant mainly because of its low permeability. In most locales, its sandy, finely granular limestone produces little or no water, but instead acts as confining material causing artesian conditions in the underlying Santee Limestone. Yields from wells in the Santee are usually less than 300 gpm (E/A&H, 1996).

2.0 ASSESSMENT INFORMATION

2.1 SITE-SPECIFIC GEOLOGY AND HYDROGEOLOGY

2.1.1 Site Geology

Five direct push soil borings (CNC18-B01 through CNC18-B05) were advanced at Site 18 under the supervision of a TtNUS geologist between April 27 and April 29, 1999 (Figure 3). These borings ranged in depth from 6 to 30 feet bls and provided soil samples to characterize the subsurface lithology. On July 25, 1999, two shallow monitoring wells (CNC18-MW01 through CNC18-MW02) were installed to a depth of 12 feet bls. Soil grab samples were collected during installation to describe the subsurface lithology. From August 8 to 9, 1999, a vertical delineation monitoring well (CNC18-MW-03D) was installed to 33 feet bls. During the direct push and drilling processes, lithologic samples were collected using split-spoon samplers to characterize the subsurface lithology to a depth of 38 feet bls.

Twenty-six direct push soil borings (CNC19-B01 through CNC19-B26) were advanced at Site 19 under the supervision of a TtNUS geologist between April 27 and May 27, 1999 (Figure 3). These borings ranged in depth from 2 to 28 feet bls and provided soil samples to characterize the subsurface lithology. On June 28, 1999, five shallow monitoring wells (CNC19-MW01 through CNC19-MW05) were installed to a depth of 12.5 to 13.5 feet bls. Grab soil samples were collected during installation to describe the subsurface lithology. No vertical delineation monitoring well was installed.

Based on lithologic descriptions from the soil borings and monitoring wells, the subsurface soil generally consists of interlayers of light brown to gray sandy silt and silty sand near the surface. Dark-gray to black silty sand and clay were encountered in samples from approximately 2 to 28 feet bls (Figure 4 and Figure 5). Boring logs are presented in Appendix B.

2.1.2 Site Hydrogeology

Seven shallow water table monitoring wells, CNC18-MW01, CNC18-MW02, CNC19-MW01, CNC19-MW02, CNC19-MW03, CNC19-MW04, and CNC19-MW05, and one deep vertical delineation monitoring well, CNC18-MW03D, were installed as part of this RA investigation (Figure 3). The shallow monitoring wells were completed to a depth of 12.5 to 13.5 feet bls. Each shallow monitoring well was completed using 10 feet of 2-inch diameter, 0.01-inch machine-slotted Schedule 40 polyvinyl chloride (PVC) screen that bracketed the water table.

Monitoring well CNC18-MW03D was completed as Type III monitoring well with 6-inch-diameter PVC surface casing grouted to a depth of 24 feet bls. After the grout for the surface casing cured for 24 hours, the bore hole for CNC18-MW03D was advanced to a depth of 33 feet. A 2-inch-diameter PVC monitoring well was installed in each well with a 5-foot, 0.01-inch machine-slotted PVC screen. Well construction logs for the RA monitoring wells are presented in Appendix B. At the completion of the well installations, a South Carolina registered professional surveyor surveyed each monitoring well location and the top of casing elevation.

Three temporary, small diameter, PVC piezometers, CNC19-P02, CNC19-P03, and CNC19-P04 were installed inspect the groundwater for the presence of free product. The piezometers were constructed of 1-1/4-inch-diameter Schedule 80 PVC threaded casing and well screen. The screen section of the piezometer was installed to bracket the water table. The piezometers were completed with a 10-foot screen section installed from 2 to 10 feet bls. Water level data from the piezometers indicated a westward groundwater flow direction across the sites.

Groundwater in shallow wells at Site 18 and Site 19 was encountered at depths ranging from approximately 2.8 to 6.2 feet bls during the RA investigation. The recorded water-level data collected during the RA are presented in Table 1. Groundwater elevation measurements were recorded from the site monitoring wells on September 9, 1999. Figure 6 presents the groundwater potentiometric surface recorded during the field event on September 9, 1999. The potentiometric surface map depicts a groundwater trough extending from east to west across the site.

As part of the Final RCRA Facility Investigation Report for Zone G (E/A&H, 1996), a tidal influence investigation was conducted. The objective of the investigation was to provide long-term water level monitoring to determine the effects of the tidal fluctuation on wells and groundwater flow throughout Zone G. During the tidal study, water levels were recorded in 32 wells throughout Zone G over a period of one day. Measurements were recorded every hour using data loggers. The 1-day period spanned one high tide and one low tide cycle.

Results of the tidal survey identified the maximum fluctuation in shallow monitoring wells to be as much as 3.64 feet with a typical variation of less than 0.5-feet. Additionally, monitoring wells located closer to the tidal source were more influenced by tidal changes than wells on the peninsula. The wells located in the study area exhibited tidal fluctuations of 0.2 to 1.16 feet. The heterogeneity of the aquifer material may limit or accentuate the tidal response in some wells.

The report concluded that the minimal fluctuations in the groundwater levels were not expected to play a significant role in directing contaminant transport in any direction other than that determined by the prevailing natural groundwater gradient (E/A&H, 1996).

2.2 ASSESSMENT RESULTS

Five soil borings were completed as part of the screening portion of the soil investigation at Site 18. Five soil borings were completed to collect soil samples for analysis at a fixed base laboratory to confirm the Chemicals of Concern (CoC). Twenty-six soil borings were completed as part of the screening portion of the soil investigation at Site 19. Seven soil borings were completed to collect soil samples for analysis at a fixed base laboratory to confirm the Chemicals of Concern (CoC). The soil borings for screening evaluation were completed using a Direct Push Technology (DPT) rig. Samples were collected to evaluate subsurface soil vapors, soil contaminant concentration (via a mobile laboratory), and groundwater contaminant concentrations (via a mobile laboratory). The soil samples were collected from a maximum depth of 6 feet bls. The soil and groundwater samples collected for mobile laboratory screening were analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX), naphthalene, and diesel range organics.

Soil samples for CoC evaluation were collected on May 4, May 13, May 14, and May 17, 1999 and analyzed for BTEX and naphthalene using U.S. Environmental Protection Agency (USEPA) Method 8260B, polynuclear aromatic hydrocarbons (PAHs) and naphthalene using USEPA Method 8070C, and total recoverable petroleum hydrocarbons (TRPH) using USEPA Method 9071A. One sample from each site was collected for grain size determination using sieve and hydrometer analysis, one sample was collected for Target Analyte List (TAL) Metals, and one sample was collected for analysis of Total Combustible Organics (TCO). The sample collection was conducted in accordance with the SCDHEC guidance document Standard Limited Assessment (June 1997). Lithologic logs for each soil boring are presented in Appendix B. The soil boring locations are shown on Figure 3 and the assessment results are presented in Section 2.3.1.

Each piezometer and monitoring well was checked for free-phase floating product (free product) prior to sampling. Approximately 3.1 feet of free product was detected in existing monitoring well FDS01A on September 9, 1999. Free product was not detected in the other monitoring wells or piezometers.

A comprehensive groundwater monitoring event was conducted between August 6 and September 9, 1999. Groundwater sampling was conducted using a peristaltic pump and low flow, quiescent techniques. The monitoring wells were sampled in accordance with SCDHEC's guidance document South Carolina Risk-Based Corrective Action for Petroleum Releases (January 1998). Each well was purged of three to six well volumes or until water quality parameters of pH, temperature, and conductivity stabilized. The field data sheets are included in Appendix C. A summary of the field parameter measurements is presented in Table 2. Groundwater samples were analyzed for BTEX and MTBE using USEPA Method 8260 and PAHs using USEPA Method 8270.

Two of the groundwater samples from each site were also analyzed for the following natural attenuation parameters: dissolved oxygen, alkalinity, carbon dioxide, sulfide, ferrous iron, nitrite, manganese, nitrogen/nitrate, sulfate, and methane. Groundwater natural attenuation data are summarized on Table 3.

2.3 FIELD SCREENING ASSESSMENT

2.3.1 Soil Vapor Assessment

Five soil borings were completed to evaluate for soil vapors as part of the soil screening assessment at Site 18. Thirty-two soil borings were completed to evaluate soil vapors as part of the soil screening assessment at Site 19. Organic vapor analyzer (OVA) headspace measurements were recorded at 1-foot intervals from ground surface to the top of the water table. Table 4 summarizes the soil vapor screening results. Figure 3 presents the soil boring locations.

Soil vapor concentrations ranged from non detect to 100 parts per million (ppm) at Site 18. Soil vapor concentrations ranged from non detect to 123 ppm at Site 19. Soil samples from 25 out of the 35 total soil boring locations at both sites contained vapor concentrations less than 50 ppm. Soil samples from six soil boring locations contained vapor concentrations ranging between 50 to 100 ppm. Soil samples from four soil boring locations contained vapor concentrations ranging from 100 to 123 ppm. The highest soil vapor concentrations were detected near and at the water table at sample depths of 3 to 7 feet bls.

The soil vapor assessment was used as a screening method to assist in identifying locations for collection of soil samples and groundwater monitoring wells. Soil sample and monitoring well locations were determined, in part, based on these data.

2.3.2 Soil Mobile Laboratory Results

One soil sample was collected from each soil boring at Site 18, and one soil sample was collected from each of twenty borings at Site 19. The soil samples were analyzed in a mobile laboratory for BTEX, naphthalene, and diesel range organics using USEPA Method 8260. The soil samples were selected based on the soil vapor screening results with the additional criterion that the samples originate in the vadose zone above the water table. Table 5 presents a summary of the analytical data from the mobile laboratory.

BTEX constituents were reported below detection limits in all samples from Site 18 with the exception of 9.6 ug/L of total xylenes (CNC18-B04). BTEX constituents were reported below detection limits in all samples from Site 19 with the exception of 5.6 ug/L of total xylenes (CNC19-B08).

Naphthalene was detected in two of five samples at Site 18; the maximum concentration was 29 ug/L (CNC18-B03). Naphthalene was detected in 8 of 17 soil samples analyzed at Site 19; concentrations ranged from 27 to 1300 ug/kg with the maximum detected at CNC19-B16. Diesel range organics were not detected at Site 18; however, they were detected in 10 of 18 samples analyzed at Site 19 at a maximum concentration of 300 mg/kg (CNC19-B11). The petroleum constituents identified in the mobile laboratory samples correlate with the boring locations where the highest soil vapor concentrations were detected.

The mobile laboratory soil analysis was used as a screening method to assist in identifying locations for collection of soil samples for fixed base laboratory analysis and locations for groundwater monitoring wells. Soil sample and monitoring well locations were determined in part based on these data.

2.3.3 Groundwater Mobile Laboratory Results

Groundwater samples were collected from five soil borings at Site 18. Groundwater samples were collected from twenty soil borings at Site 19. Each groundwater sample was analyzed using a mobile laboratory for BTEX, naphthalene, and diesel range organics using USEPA Method 8260. Table 6 presents a summary of the analytical data from the mobile laboratory.

As indicated in Table 6, BTEX constituents were not detected in any of the mobile laboratory groundwater samples at Site 18. BTEX was detected in 9 of the 20 samples analyzed from Site 19. The maximum concentrations of benzene, ethylbenzene, and total xylenes were 32, 4.2, and 4.7 ug/L, respectively, were found at CNC19-B16; toluene was not detected.

Naphthalene was detected in three of five samples from Site 18 at concentrations ranging from 6.4 ppb to 23 ppb. Naphthalene was detected in 13 of 19 samples at Site 19 with concentrations ranging from 3.1 to 1900 ug/L; the highest concentrations were found at borings CNC19-B13, -B16, and B-21. Diesel range organics were detected in only one sample at Site 18 at a concentration of 0.4 mg/L. Diesel range organics were detected in 18 of 19 samples at Site 19 with concentrations ranging from 0.1 to 27 mg/L.

The mobile laboratory groundwater analysis was used as a screening method to assist in identifying locations for permanent groundwater monitoring wells.

2.4 CHEMICALS OF CONCERN IN SOIL AND GROUNDWATER

2.4.1 Chemicals of Concern in Soil

Five subsurface soil samples were collected from the Site 18 area and seven subsurface soil samples were collected from the Site 19 area for determination of CoCs. One duplicate sample was also collected from each site. The soil boring locations are shown on Figure 3, and Table 7 summarizes the CoCs detected in the soil samples. No CoCs were detected above the laboratory reporting limits in the soil samples collected from Site 18.

BTEX could not be quantified at or below the soil leaching RBSLs in two samples due to interference from other compounds. Total xylenes were detected above the laboratory detection and reporting limits but below the soil leaching RBSLs. Benzo(b)floranthene and chrysene were detected above the laboratory detection limit but below the soil leaching RBSLs. Naphthalene was detected in excess of the soil leaching RBSL of 210 ug/kg in soil samples CNC19-B08 (7,250 ug/kg), CNC19-B09 (1,500 ug/kg), and CNC19-B10 (5,500 ug/kg). The naphthalene concentration of 200 ug/kg detected in soil sample CNC19-B11 was below the RBSL. The soil leaching RBSL for sandy soil was based on a grain size analysis completed on sample 16SLB03 indicating a silty sand soil matrix (86% sand, 8% silt, 6% clay). Soil analytical data sheets and grain size analysis reports are provided in Appendix D. Figure 7 identifies the areal distribution of benzene and Figure 8 identifies the areal distribution of naphthalene detected in site soils during soil sampling conducted for the RA.

2.4.2 Chemicals of Concern in Groundwater

Table 8 presents the analytical results for CoCs detected in the groundwater samples. Groundwater analytical data sheets for the August 6 and 10, 1999 and September 9, 1999 field events are presented in

Appendix D. Figures 9 and 10 illustrate the areal distribution of benzene and naphthalene in groundwater, respectively, for the combined August and September sampling events.

Naphthalene was the only groundwater CoC detected above laboratory reporting limits in the groundwater samples collected from Site 18. Naphthalene was detected in groundwater samples collected from CNC18-MW02 at 227 micrograms per liter (ug/l), above the RBSL of 10 ug/l.

Benzene and naphthalene constituents were the only groundwater CoCs detected above the laboratory reporting limits in the groundwater samples collected from Site 19. A benzene concentration of 15 ug/l was detected/estimated in the groundwater sample from CNC19-MW01. This concentration is above the RBSL of 5 ug/l established for benzene. Naphthalene was detected above the RBSL of 10 ug/l in groundwater samples collected from CNC19-MW01 (98 ug/l), CNC19-MW02 (14 ug/l), CNC19-MW03 (12 ug/l), and CNC19-MW04 (157 ug/l).

2.5 ANALYTICAL DATA

The analytical data from the June 1996 and February 1998 Underground Storage Tank Assessment Reports for Site 18 and Site 19 are presented in Appendix A. Soil analytical data generated during this RA are summarized in Table 7. Groundwater analytical data generated during this RA are summarized in Table 8. The soil and groundwater laboratory analytical data for this RA are included in Appendix D.

2.6 AQUIFER CHARACTERISTICS AND EVALUATION

Groundwater levels were measured from the site monitoring wells on September 9, 1999. The groundwater flow direction across the site was generally westerly, with local groundwater highs to the north and south. The distribution of CoCs in groundwater (see Figures 9 and 10) suggests that the prevailing groundwater flow direction has been north and south, possibly a result of tidal influences. The western component of the hydraulic gradient provided in the Fuel Distribution System RFI was 0.008 feet per foot (ft/ft). Based on comparison with the CNC Zone G RFI investigation data, the northerly component of the site hydraulic gradient (0.0438 ft/ft) was deemed to be too steep to represent the prevailing, long-term groundwater flow conditions.

As part of the Fuel Distribution System Contamination Assessment Report (CAR) for Area 1, rising and falling head slug tests were conducted on six shallow monitoring wells in the immediate vicinity of Site 18 and Site 19 to determine the hydraulic conductivity of the surfical aquifer (E/A&H, 1999). Slug tests were conducted by instantaneously adding (falling head) or removing (rising head) a volume (slug) of water

from the well and measuring the recovering water level with a data logger. A hydraulic conductivity value was then calculated for the rising head test and for the falling head test. The average hydraulic conductivity for each well was determined by calculating the geometric mean of the rising and falling head values. Because hydraulic conductivity data are lognormally distributed, the geometric mean was determined to be the most representative measure of central tendency.

The well construction details and boring logs for each well tested during the Fuel Distribution System RCRA CAR were reviewed to determine which wells were most representative of the conditions present at Site 18 and Site 19. To make this determination the screened interval and proximity to the site were evaluated. Based on this evaluation, monitoring wells FDS01A, FDS-01C, and FDS-01D were selected as the most representative wells. These three wells are located between Building 123 and AST 3909. The geometric mean of the rising and falling head conductivities for these wells was 3.8 feet per day.

Potential movement of groundwater at the site may be described in terms of transportation by natural flow system in the saturated zone, assuming groundwater flow follows Darcy's Law. Using Darcy's Law, the average linear velocity of groundwater may be expressed as:

$$V = \left(\frac{K}{n}\right) \times i$$

where:

V = average velocity

K = hydraulic conductivity = 3.8 ft/day

n = volumetric porosity = 0.43

(Based on Qs samples analyzed during the Zone G RCRA Facility Investigation)

i = representative hydraulic gradient measurement = 0.008 ft/ft

therefore:

$$V = \left(\frac{3.8 \text{ ft/day}}{0.43}\right) \times 0.008 \text{ ft/ft}$$

$$V = 0.071 \text{ ft/day}$$

In summary, the seepage velocity of the surficial aquifer was calculated to be approximately 26 feet per year based on a hydraulic conductivity of 3.8 feet per day, a hydraulic gradient of 0.008 feet per foot, and a porosity of 43% for sandy soil. Aquifer characterization graphs for the referenced well slug tests are provided in Appendix E.

2.7 FATE AND TRANSPORT MODEL DESCRIPTION

The Domenico Model was the fate and transport model used to determine groundwater site-specific target levels (SSTLs) in the risk analysis. The Domenico dilution/attenuation model is presented in the SCDHEC guidance document, South Carolina Risk-Based Corrective Action for Petroleum Releases (SCDHEC 1998). This model is very conservative in that it assumes an infinite contaminant mass condition through which groundwater flows. The model incorporates biological decay effects through a first-order decay process; however, this mechanism was ignored because SCDHEC guidance specifies that the decay rate must be assumed to be zero if site-specific decay rates have not been determined.

The impacted groundwater source area was modeled as 50 feet (15.00 meters) wide and 6.56 feet (2.0 meters) deep; these values are conservative defaults suggested by the American Society for Testing and Materials (ASTM) Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites (ASTM, 1997). The maximum source concentrations are assumed to exist throughout the source area, further compounding the conservatism of the estimate. Because of the existence of free product onsite, the maximum solubility in equilibrium with fuel oil, calculated using Raoult's Law, was used for the maximum constituent concentrations. Fuel oil constituents can vary greatly but were assumed for this investigation to be similar to kerosene, which is typically 44% naphthalene (Conoco, Inc., 1996. CONCAWE Diesel Fuel/ Kerosene).

Site-specific data were used for saturated hydrautic conductivity, hydrautic gradient, and the average fraction of organic carbon in soil (1.34E-05 m/sec, 0.008 ft/ft, and 0.0082 g-C/g-soil, respectively). The soil bulk density (1.54 g/cm³) and porosity (0.43 cm³/cm³) were determined from the CNC Zone G RFI investigation data and assumes a soil particle density of 2.7 g/cm³.

The following estimates of dispersivity were used in the Domenico model as given in SCDHEC (1998):

Parameter	Estimate
Longitudinal Dispersivity, α _x	x/10, where x= distance between the point of
	exposure and the source or compliance point
Transverse Dispersivity, α _y	α _x /3
Vertical Dispersivity, α _z	α _x /20

2.8 PREDICTED MIGRATION AND ATTENUATION OF CHEMICALS OF CONCERN

The most recent groundwater-gauging event shows that general groundwater flow was westerly, with local groundwater highs to the north and south of the study area. Regional flow patterns indicate that groundwater flow is tidally influenced, with flow to the southwest during incoming tides and flow to the northeast during outgoing tides. The observed groundwater flow pattern was most likely the result of variations in subsurface permeability combined with changes in tidal flow. The current extents of groundwater impacts are concentrated in the vicinity of CNC18-MW02, FDS01A, CNC19-MW01, CNC19-MW-2, CNC19-MW-3, and CNC19-MW04. Well FDS01A contained free product in the latest monitoring event. Concentrations of compounds of interest in all other monitoring wells have been non-detect or less than the reporting limit and greater than the detection limit.

The Domenico model was used to predict the distance at which the leading edge of the plume is attenuated to SCDHEC RBSLs in 10 and 20 years without using degradation due to biological decay. This was done by adjusting the time to 10 years (3.15x10⁸ second) and 20 years (6.31x10⁸ second) and solving for distance (x) by trial and error. The source was assumed to be free product [i.e., the source concentration was assumed to be that of groundwater in equilibrium with fuel oil (see Section 3.1) for the entire 10- and 20- year periods]. The distance was changed separately for benzene, toluene, and naphthalene until the required distance that is necessary for the concentration to attenuate to the RBSLs was determined. Only the calculated concentrations of benzene, toluene, and naphthalene at the source (in equilibrium with free product) were greater than their respective RBSLs; therefore, these were the only chemicals for which plume distances were calculated. The model estimates that after 10 years, the concentrations of benzene, toluene, and naphthalene will be 0.005 mg/L, 1.0 mg/L, and 0.010 mg/L (RBSLs) at distances of 140 feet, 63 feet and 22 feet, respectively. Furthermore, after 20 years, the concentrations of benzene, toluene, and naphthalene are 0.005 mg/L, 1.0 mg/L, and 0.010 mg/L (RBSLs) at distances of 220 feet, 94 feet, and 43 feet, respectively.

The benzene plume bounds the limits of the toluene and naphthalene plumes also; therefore, separate figures were not generated for each constituent. The shape of the plume was estimated based on the modeling predictions and the current plume map for benzene (see Figure 9). The Domenico 10-year and 20-year simulation spreadsheets are presented in Appendix F.

3.0 TIER 2 EVALUATION

3.1 COMPARISON OF ANALYTICAL RESULTS WITH RBSLs

Soil samples were collected from May 4 through May 17, 1999. The samples were analyzed for BTEX and PAHs including naphthalene. Benzene could not be quantified at or below the RBSL in several samples due to interference from other compounds. Naphthalene was found at maximum concentrations above its RBSL for sand-rich soil less than 5 ft above groundwater. The maximum naphthalene concentration was 7,250 ug/Kg, and its RBSL is 210 ug/Kg.

Groundwater sampling was conducted on August 6 to September 9, 1999. Free product was not detected in any of the assessment wells, but was detected in existing well FDS-01A. The remaining wells were sampled and analyzed for BTEX, MTBE, and PAHs including naphthalene. Dectected concentrations of benzene (15 ug/l) and naphthalene (227 ug/l) exceeded their respective RBSLs of 5 ug/l and 10 ug/l. A comparison of soil and groundwater maximum concentrations to RBSLs is summarized in Table 9. However, because free product was detected in the existing well FDS-01A, the theoretical groundwater concentration in equilibrium with free product based on Raoult's Law (see Appendix F) was calculated for each of the potential CoCs. These calculated values were used for comparison with RBSLs and for calculation of SSTLs in the Tier 1 and Tier 2 evaluations, respectively. This analysis showed that the theoretical concentrations of benzene (313 ug/L), toluene (4,650 ug/L), and naphthalene (23,350 ug/L) exceed the groundwater RBSLs; therefore, these CoCs were carried forward into the Tier 2 evaluation. The theoretical concentrations of ethylbenzene (100 ug/L) and xylenes (794 ug/L) do not exceed the groundwater RBSLs; therefore, these CoCs were not considered further in the evaluation of groundwater.

3.2 SITE CONCEPTUAL EXPOSURE MODEL

This section focuses on the current and future land use issues concerning the site. Building 123 was used as a boiler house to supply steam to ships and parts of the Navy Base. AST 3909 supplied the fuel for the boiler. Figure 1 shows that the site is located in and surrounded by the CNC. The area surrounding CNC is "mature urban," having long been developed with commercial, industrial, and residential land use. Commercial areas are primarily west of CNC; industrial areas are primarily to the north of the base along Shipyard Creek. This facility is included in the BRAC activities; therefore, the future use of the facility is unknown but it is likely to remain a commercial/industrial use area.

The City of Charleston water treatment plants provide drinking water to the site and to the surrounding properties. The closest surface water body is the Cooper River located less than 200 feet northeast of the

site. Potable wells and irrigation wells were not identified within 1,000 feet of the site (E/A&H, 1996). Numerous monitoring wells are located within 1,000 feet of the site (E/A&H, 1996). Groundwater at the site appears to be affected by tidal variations with some plume migration both to the north and to the south of well FDS01A that contains free product. The worst case condition considered in the Tier 2 evaluation (for receptor drinking groundwater) was plume migration towards the Cooper River.

3.3 EXPOSURE PATHWAY ANALYSIS

This section presents the receptor characterizations of the potentially exposed populations in the vicinity of the site and identifies the potentially complete exposure pathways for those receptors. SCDHEC requires that only those exposure pathways with CoC concentrations exceeding Tier 1 RBSL concentrations be examined in a Tier 2 Risk-Based Corrective Action Report. Tables 10 and 11 present the exposure pathway assessments for current and future land use scenarios.

3.3.1 On-Site Commercial /Industrial Worker

An on-site commercial worker is defined as an employee who works in a commercial capacity at the site. Commercial use of the site in the future is likely; therefore, an on-site commercial worker was considered as a potential receptor. Incidental ingestion and dermal contact with impacted soil are expected to be negligible for commercial workers because they are located inside a building and surficial soil was not impacted above RBSLs. Drinking water at this site is provided by the city; therefore, ingestion of groundwater is not a complete exposure pathway. The building foundation is assumed to be sufficient to prevent volatilization from both soil and groundwater into a commercial building, and there is no history of vapors in the commercial building. It is unlikely that any additional exposure pathways will exist for future on-site workers; therefore, no complete pathways exist for either current or future commercial workers.

3.3.2 On-Site Visitor

An on-site visitor is defined as any person other than a worker who might come on site. On-site visitors would have the same exposure pathways as commercial workers, but their exposure duration would be much shorter. This receptor does not have to be quantified because a potential on-site visitor's chemical intake would not drive risk or cleanup levels at the site.

3.3.3 On-Site Construction Worker

An on-site construction worker is defined as a laborer who would be involved in intrusive activities on or around the site, particularly in the area of subsurface utilities. On-site construction workers could be exposed to constituents in soil by the following pathways: inhalation of volatiles from soil, dermal contact with soil, and incidental ingestion of soil. On-site construction workers could be exposed to constituents in groundwater by the following pathways: inhalation of volatiles from groundwater, dermal contact with groundwater, and incidental ingestion of groundwater. Utilities lie in the immediate vicinity of the impacted area, and this pathway was considered for soil and groundwater exposure to a utility worker.

3.3.4 On-Site Resident

An on-site resident is defined as any person making his or her home at the site. This site is expected to remain a commercial/industrial facility; therefore, the on-site resident receptor was not considered further.

3.3.5 Off-Site Resident

An off-site resident is defined as any person making his or her home near the site. This receptor's location is either an actual current residence near the site or is a vacant lot or property on which a residence could be built. The site is located in an area that will likely remain commercial/industrial; therefore, this potential receptor was not considered further.

3.3.6 Surface Water

The Cooper River is located less than 200 feet northeast of the site. This exposure pathway was therefore considered for ingestion of surface water.

3.4 IDENTIFICATION OF DATA REQUIREMENTS

No additional data are required to calculate site specific target levels (SSTLs) for the site.

3.5 SITE-SPECIFIC TARGET LEVELS

The concentration of benzene in soil could not be quantified at or below the RBSLs for leaching to groundwater, and the concentration of naphthalene in soil exceeded the RBSLs for leaching to groundwater. In addition, the concentrations of benzene and naphthalene in groundwater exceeded RBSLs for groundwater ingestion; therefore, further evaluation was necessary.

3.5.1 SSTLs for the Construction Worker – (Soil)

The only identified future potential receptor for the soil pathway is the construction (utility) worker during digging or trenching activities. To evaluate this pathway, site soil concentrations were compared with RBSLs for ingestion or dermal contact with surficial soil. (Surficial soil was not impacted at the site; however, for the construction worker pathway, exposure to subsurface soil is evaluated as surface soil because the worker is expected to have direct contact with the subsurface soil.)

Compound Of	Maximum Concentration	RBSL For Ingestion Or Dermal Contact With	Exceed
Concern	(mg/Kg)	Soil - Commercial (mg/Kg)	RBSL
Benzene	0.9	200	No
Naphthalene	7.250	41,000	No

As shown in the above table, the maximum soil benzene and naphthalene concentrations do not exceed the applicable RBSLs, therefore, a construction/industrial worker is not considered at risk.

3.5.2 SSTLs for the Construction Worker – (Groundwater)

Groundwater RBSLs provided by SCDHEC are for ingestion only, therefore, RBSLs were calculated for the additional pathways of dermal contact, incidental ingestion, and inhalation of vapors. A target cancer risk of 1 x 10⁻⁶ and a target hazard quotient of 1 were used in the calculations. Standard defaults were used when available and applicable to a construction worker. When no standard parameters were available, conservative assumptions were used. Where possible, site-specific parameters were used for site conditions. For all pathways, the exposure frequency was assumed to be 90 days/year and the exposure duration was assumed to be 1 year. These assumptions were considered conservative based on the nature of utility work.

The dermal contact RBSLs were calculated using the procedures in Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual, Supplemental Guidance, Dermal Risk

Assessment, Interim Guidance (EPA Peer Consultation Workshop Draft 1998). Based on expected limited contact with groundwater, the event frequency was assumed to be 1 event/day and the event duration was assumed to be one hour/event. The skin surface area available for contact was 4500 cm², based on one-fourth the skin surface area given in the risk assessment guidance document for a swimming adult.

The incidental ingestion RBSLs were calculated using the equation given in Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Interim Final), EPA/540/1-89/002 (EPA 1989). An incidental ingestion rate of 0.01 L/day was assumed based on a fraction (12.5%) of the incidental ingestion rate for a wading adult (0.01 L/hr), considered for an 8-hour work day. The incidental ingestion rate for wading adults is given in Supplemental Guidance to RAGS: Region IV Bulletins, Human Health Risk Assessment (EPA Region 4 1995).

Utility lines in the area are typically 2 to 6 feet deep. The depth to groundwater at the site is shallow enough that exposure to a worker in a utility trench is considered a complete pathway. It was assumed that a construction worker might be exposed to chemicals volatilizing from standing groundwater. The inhalation RBSLs were calculated using Henry's Law:

Where H = Henry's Law constant [mg/L-air/mg/L-water]

The RBSL_{AIR} for each chemical was calculated using the equation given in the American Society for Testing and Materials (ASTM) Standard Guide for Risk-Based Corrective Action Applied to Petroleum Release Sites, Designation E 1739-95e1 (1997). SCDHEC values were used for Henry's Law constants.

The minimum RBSL for the three pathways was chosen as the RBSL for the construction worker. The following table shows the calculated RBSLs for each pathway along with the selected (minimum) RBSL:

Chemical Of	Dermal RBSL	Incidental Ingestion	Inhalation RBSL	SSTL (Min. RBSL	Maximum Concentration	Theoretical	Exceeds
Concern	(mg/L)	ŘBSL	(mg/L)	` for	In	Source	SSTLs
		(mg/L)		Construction Worker)	Groundwater (mg/L)	Concentration	(Yes/No)
				(mg/L)	,3 -,	(mg/L) ^(a)	
Benzene	0.85	68.52	0.15	0.15	0.003J	0.313	Yes
Toluene	23.98	5677.78	5.38	5.38	<0.005	4.646	No
Naphthalene	1.63	1135.56	2.63	1.63	0.227	23.346	Yes

⁽a) Calculated for free product using Raoult's Law (see Appendix F).Appendix F provides the parameters and results of the RBSL and SSTL calculations.

The above comparison shows that the calculated theoretical concentrations of CoCs in groundwater, assuming equilibrium with free product, exceed the SSTLs for both benzene and naphthalene.

3.5.3 SSTLs Protective of Surface Water

SSTLs were developed which would protect the Cooper River should discharge of impacted groundwater occur. The Domenico model as described in Section 2.7 was used to determine the groundwater SSTLs for benzene, toluene, and naphthalene under steady state conditions. The fate and transport parameters used in the model are provided in Appendix F. For this analysis the groundwater flow is considered to be northeast toward the Cooper River, approximately 200 feet from the site.

Because free product is present, dissolved hydrocarbon concentrations at FDS01A were assumed to be the concentration of each compound in equilibrium with fuel oil, calculated using Raoult's Law. These concentrations were used in the Domenico model as the source concentrations. The distance from FDS01A to the Cooper River (Figure 1), which is the nearest point of exposure (other than a construction worker) was estimated at 200 feet. Using the values for the ingestion RBSLs (0.005 mg/L for benzene, 1 mg/L for toluene, and 0.01 mg/L for naphthalene) at the point of exposure (POE), the SSTLs at FDS01A were calculated and compared with the calculated source concentrations at FDS01A. The SSTLs at the compliance well (CNC19-01C) were also calculated using the groundwater ingestion RBSLs at the point of exposure.

The distance from the selected compliance well to the point of exposure was estimated to be approximately 150 feet. Based on the groundwater flow velocity, this well is located greater than 1-years travel time upgradient of the POE (i.e., the Cooper River). Groundwater SSTLs were determined to be:

Chemical Of Concern	Source SSTL (mg/L)	Compliance Point SSTL (mg/L)	Maximum Concentration In Groundwater (mg/L)	Theoretical Source Concentration (mg/L) (a)	Exceeds SSTLs (Yes/No)
Benzene	0.053	0.031	0.003J	0.313	Yes
Toluene	10.6	6.2	<0.005	4.646	No
Naphthalene	0.106	0.062	0.227	23.346	Yes

(a) Calculated for free product using Raoult's Law (see Appendix F).

Appendix F provides the parameters and results of the RBSL and SSTL calculations.

The above comparison shows that the theoretical source concentration for benzene and naphthalene, assuming equilibrium with free product, exceeds the SSTLs that are protective of the Cooper River based on ingestion of the surface water.

3.5.4 Soil Leaching Pathway

The maximum benzene concentration exceeding the RBSLs found in soil was <0.9 mg/kg. The maximum naphthalene concentration exceeding the RBSLs found in soil was 7.25 mg/kg. The SCDHEC Soil Leachability Model was used to calculate SSTLs for benzene and naphthalene. Site specific parameters were input when available, otherwise values were estimated from the charts on page C2 through C5 of the SCDHEC Risk-Based Corrective Action Guidance for Petroleum releases, January 5, 1998. The minimum calculated groundwater RBSLs for construction worker exposure (e.g., 0.15 mg/L benzene, 1.63 mg/L for naphthalene, see Section 3.5.2) were used as the groundwater target levels. The results are summarized below:

Chemical of Concern	Maximum Concentration in Soil	Soil Leaching SSTL	Exceeds SSTLs
Benzene	(mg/kg) <0.9	(mg/kg) 0.975	(Yes/No) No
Naphthalene	7.250	183.89	No

As shown above, the maximum soil concentrations of benzene (<0.9 mg/kg) and naphthalene (7.25 mg/kg) found during the site assessment do not exceed the calculated SSTLs for benzene and naphthalene (0.975 mg/kg and 183.89 mg/kg, respectively). Therefore, the construction worker is not at risk if exposed to groundwater impacted by soil leaching.

3.6 RECOMMENDATIONS

The extent of hydrocarbon impact to soil has been delineated. The only potential receptor identified was the on-site construction worker who might contact subsurface soil. However, the maximum soil concentrations of all CoCs do not exceed their respective RBSLs for ingestion and dermal contact.

The northward extent of the groundwater plume has not been delineated. The modeling (see Section 2.8) indicates that if the release is less than 20 years old that the plume will not have reached the Cooper River and the river has not been impacted by CoCs presently found at the source area. No current or future drinking water receptors were identified for the site.

The theoretical concentrations of benzene and naphthalene in groundwater, assuming equilibration with free product, were found to exceed the SSTLs for the construction worker and for the Cooper River (Table 12). Because the SSTLs are exceeded, removal of free product will be necessary to protect the identified receptors. However, the concentrations of CoCs detected in groundwater to date (see Table 12) indicate that once free product is removed, only the concentration of naphthalene in groundwater will slightly exceed the SSTLs for the Cooper River which is located approximately 200 feet to the north. Therefore, following free product removal, an Intrinsic Corrective Action is recommended for the site (pending the results of groundwater sampling after free product removal).

4.0 REFERENCES

E/A&H (Ensafe/Allen & Hoshall, Inc.), 1996. Final RCRA Facility Investigation for Zone G, Naval Base Charleston, Charleston, South Carolina, July 5, 1996.

SCDHEC (South Carolina Department of Health and Environmental Control), 1977. Standard Limited Assessment, June 1977.

SCDHEC 1998. South Carolina Risk Based Corrective Action for Petroleum Releases, January 1998.

SPORTENDETCHASN (Supervisor of Ship Building, Conversion and Repair, United States Navy, Portsmouth, Virginia, Environmental Detachment Charleston), 1998. Underground Storage Tank (UST) Assessment Report UST, Charleston Naval Base Complex, North Charleston, SC, March 4, 1998.

SPORTENDETCHASN, 1999. Personal Contact between Paul Calligan TtNUS and Copes Wannamacker, SPORTENDETCHASN, June 17, 1999.

ASTM (American Society for Testing and Materials), 1997. Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites.

USEPA (Environmental Protection Agency), 1989. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Interim Final), EPA/540/1-89/002.

USEPA REGION IV, 1995. Supplemental Guidance to RAGS: Region 4 Bulletins, Human Health Risk Assessment, Interim, November 1995, Atlanta, Georgia.

USEPA PEER CONSULTATION WORKSHOP DRAFT, 1998. Risk Assessment Guidance for Superfund, Volume I Human Health Evaluation Manual, Supplemental Guidance, Dermal Risk Assessment, Interim Guidance, November 1998, Washington, D.C.

TABLE 1

GROUNDWATER ELEVATIONS SITE 18, BUILDING 123 and SITE 19, AST 3909 ZONE G, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA PAGE 1 OF 1

Well #	Total Depth of Well, ft	Top of Casing Elevation, ft (MSL)	Date Measured	Depth to Water, ft (BTOC)	Depth to Product, ft (BTOC)	Product Thickness, ft	Groundwater Elevation (MSL)
FDS01A	13.0	9.75	9/9/99	9.15	6.05	3.10	3.14
FDS01B	13.0	7.69	9/9/99	4.21	ND	ND	3.48
FDS01C	13.0	9.30	9/9/99	6.00	ND	ND	3.30
FDS01D	13.0	9.46	9/9/99	6.16	ND	ND	3.30
FDS01E	13.0	6.84	9/9/99	4.68	ND	ND	2.16
CNC18-M01	12.0	7.93	9/9/99	4.68	ND	ND	3.25
CNC18-M02	12.0	6.61	9/9/99	2.77	ND	ND	3.84
CNC18-M03D	33.0	7.59	9/9/99	3.01	ND	ND	4.58
CNC19-M01	13.5	8.92	9/9/99	5.28	ND	ND	3.64
CNC19-M02	12.5	7.69	9/9/99	4.15	ND	ND	3.54
CNC19-M03	12.5	6.81	9/9/99	3.37	ND	ND	3.44
CNC19-M04	12.5	6.29	9/9/99	2.83	ND	ND	3.46
CNC19-M05	12.5	7.93	9/9/99	4.44	ND	ND	3.49

Notes:

MSL - Mean Sea Level BTOC - Below Top of Casing NM - Not Measured

ND- No Free Product Detected

ft - Feet

TABLE 2

GROUNDWATER FIELD MEASUREMENTS SITE 18, BUILDING 123 ZONE G, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

Well I.D.	Date Sampled	ate Sampled Purge method V		Temp. (°C)	рН	Conductivity (uMHOS/cm)
CNC18-M01	9/9/99	PP	2.1	25.5	6.87	1.51
CNC18-M02	9/9/99	PP	1.5	24.8	6.96	3.45
CNC18-M03D	9/9/99	PP	5.3	26.6	7.09	23.20
CNC18-M04	9/9/99	PP	4.5	27.0	6.89	0.72
FDS01F	9/9/99	PP	4.5	26.2	6.93	0.74

Notes:

(°C) - Degrees Celsius

PP - Peristaltic pump, low flow technique uMHOS/cm - Micro MHOS per centimerter

TABLE 2 - CONTINUED

GROUNDWATER FIELD MEASUREMENTS SITE 19, AST 3909 ZONE G, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

Well I.D.	Date Sampled	Purge method	Volume (gallons)	Temp. (°C)	pН	Conductivity (uMHOS/cm)
CNC19-MW01	8/6/99	PP	3.8	27.0	6.79	2.19
CNC19-MW02	8/6/99	PP	3.9	26.2	6.99	4.48
CNC19-MW03D	9/9/99	PP	4.5	26.5	6.64	3.16
CNC19-MW04	9/9/99	PP	5.3	26.0	6.72	3.53
CNC19-MW05	9/9/99	PP	4.0	26.8	6.37	4.21
CNC19-MW06	9/9/99	PP	1.1	27.2	7.25	1.47
FDS01B	9/9/99	PP	3.0	30.6	6.85	1.04
FDS01C	9/9/99	PP	3,5	25.9	6.72	1.72
FDS01D	9/9/99	PP	3.0	27.5	6.98	2.64

Notes:

(°C) - Degrees Celsius

PP - Peristaltic pump, low flow technique

uMHOS/cm - Micro MHOS per centimerter

TABLE 3

GROUNDWATER NATURAL ATTENUATION FIELD MEASUREMENTS SITE 18, BUILDING 123

ZONE G, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

Well I.D.	Date Sampled	Dissolved Oxygen (mg/l)	Alkalinity (mg/l)	Carbon Dioxide (mg/l)	Sulfide (mg/l)	Ferrous Iron (mg/l)	Nitrite (mg/l)	Manganese (mg/l)	Nitrogen/ Nitrate (mg/l) *	Sulfate (mg/l)*	Methane (ug/l)*
CNC18-MW01	9/9/99	0.20	276	232	0.22	1.90	0.002	0.5	NA	NA	NA
FDS01E	9/9/99	0.30	330	192	0.40	0.04	0.013	0.1	NA	NA	NA

Notes:

mg/l - Milligrams per liter

ug/l - Micrograms per liter

E- Estimated Concentration

* Fixed base laboratory analysis

NA = Not analyzed

TABLE 3 - CONTINUED

GROUNDWATER NATURAL ATTENUATION FIELD MEASUREMENTS SITE 19, AST 3909 ZONE G, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

Well I.D.	Date Sampled	Dissolved Oxygen (mg/l)	Alkalinity (mg/l)	Carbon Dioxide (mg/l)	Sulfide (mg/l)	Ferrous Iron (mg/l)	Nitrite (mg/l)	Manganese (mg/l)	Nitrogen/ Nitrate (mg/l) *	Sulfate (mg/l)*	Methane (ug/l) *
CNC18-MW03	9/9/99	0.05	544	306	0.80	2.30	0.000	0.4	NA	NA	NA
FDS01D	9/9/99	0.40	550	322	0.48	0.37	0.036	0.5	NA	NA	NA

Notes:

mg/l - Milligrams per liter

ug/l - Micrograms per liter

E- Estimated Concentration

* Fixed base laboratory analysis

TABLE 4

SUMMARY OF OVA SOIL SCREENING RESULTS SITE 18, BUILDING 123 ZONE G, FORMER CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

	Sample	Sample Depth	Total Organic Vapor Headspace
Sample Location	Identification	(feet)	Concentration (ppm)
CNC18-B01	18SSB0100	0	0
	18SSB0104	3	0
CNC18-B02	18SSB0201	1	2
	18SSB0202	2	2
	18SSB0203	3	2
	18SSB0204	4	2
	18SSB0205	5	7
	18SSB0206	6	7
	18SSB0207	7	5
CNC18-B03	18SSB0301	1	8
	18SSB0302	2	8
	18SSB0303	3	8
	18SSB0304	4	8
	18SSB0305	5	8
CNC18-B04	18SSB0401	1	8
	18SSB0402	2	6
	18SSB0403	3	8
CNC18-B05	18SSB0503	3	10

Notes:

OVA - organic vapor analyzer equipped with a flame ionization detector

PPM - parts per million

ND - not detected

TABLE 4 - CONTINUED

SUMMARY OF OVA SOIL SCREENING RESULTS SITE 19, AST 3909 ZONE G, FORMER CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

	Sample	Sample Depth	Total Organic Vapor Headspace
Sample Location	Identification	(feet)	Concentration (ppm)
CNC19-B01	19SSB0101	1	Not Read
	19SSB0102	2	Refusal - concrete
CNC19-B02	19SSB0201	1	5
	19SSB0202	2	5
	19SSB0203	3	5
	19SSB0204	4	>50
	19SSB0205	5	>50
CNC19-B03	19SSB0301	1	5
	19SSB0302	2	5
	19SSB0303	3	5
	19SSB0304	4	5
	19SSB0305	5	>50
CNC19-B04	19SSB0401	1	5
	19SSB0402	2	5
	19SSB0403	3	15
	19SSB0404	4	50
	19SSB0405	5	50
CNC19-B05	19SSB0501	1	5
	19SSB0502	2	5
	19SSB0503	3	5
	19SSB0504	4	20
	19SSB0505	5	>20
CNC19-B06	19SSB0601	1	3
	19SSB0602	2	3
ļ	19SSB0603	3	3
	19SSB0604	4	20
	19SSB0605	5	20
CNC19-B07	19SSB0701	1	3
	19SSB0702	2	3
	19SSB0703	3	3
	19SSB0704	4	3
	19SSB0705	5	3
CNC19-B08	19SSB0801	1	4
[19SSB0802	2	4
	19SSB0803	3	4
	19SSB0804	4	5
	19SSB0805	5	>30

Notes:

OVA - organic vapor analyzer equipped with a flame ionization detector

PPM - parts per million

ND - not detected

TABLE 4 - CONTINUED

SUMMARY OF OVA SOIL SCREENING RESULTS SITE 19, AST 3909 ZONE G, FORMER CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

	Sample	Sample Depth	Total Organic Vapor Headspace
Sample Location	Identification	(feet)	Concentration (ppm)
CNC19-B09	19SSB0901	1	7
-	19SSB0902	2	7
	19SSB0903	3	10
	19SSB0904	4	10
	19SSB0905	5	>50
CNC19-B10	19SSB1001	1	7
-	19SSB1002	2	7
	19SSB1003	3	7
İ	19SSB1004	4	10
	19SSB1005	5	>15
CNC19-B11	19SSB1102	2	0
	19SSB1104	4	5
CNC19-B12	19SSB1201	1	0
	19SSB1202	2	4
	19SSB1203	3	6
	19SSB1204	4	0
CNC19-B13	19\$\$B1301	1	Ô
	19SSB1303	3	0
	19SSB1304	4	35
CNC19-B14	19SSB1401	1	0
	19SSB1402	2	0
	19SSB1403	3	11
	19SSB1404	4	10
	19SSB1405	5	70
CNC19-B15	19SSB1501	1	0
	19SSB1502	2	0
	19SSB1503	3	2
CNC19-B16	19SSB1601	_ 1	0
	19SSB1602	2	0
	19SSB1603	3	123
	19SSB1604	4	18
CNC19-B17	19SSB1701	1	4
	19SSB1702	2	4
	19SSB1703	3	4
	19SSB1704	4	4
	19SSB1705	5	4
CNC19-B18	19SSB1801	1	1
	19SSB1802	2	4
	19SSB1803	3	4
	19SSB1804	4	4

Notes:

OVA - organic vapor analyzer equipped with a flame ionization detector

PPM - parts per million

TABLE 4 - CONTINUED

SUMMARY OF OVA SOIL SCREENING RESULTS SITE 19, AST 3909

ZONE G, FORMER CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

ND - not detected

	Sample	Sample Depth	Total Organic Vapor Headspace
Sample Location	Identification	(feet)	Concentration (ppm)
CNC19-B19	19SSB1901	1	4
	19SSB1902	2	4
	19SSB1903	3	4
	19SSB1904	4	4
CNC19-B20	19SSB2003	3	60
	19SSB2004	4	>120
	19SSB2005	5	>50
CNC19-B21	19SSB2103	3	10
	19SSB2104	4	10
	19SSB2105	5	5
CNC19-B22	19SSB2201	1	3
	19SSB2202	2	3
	19SSB2203	3	6
	19SSB2204	4	10
CNC19-B23	19SSB2301	1	0
	19SSB2302	2	0
	19SSB2303	3	0
	19SSB2304	4	0
CNC19-B24	19SSB2401	1	0
	19SSB2402	2	0
	19SSB2403	3	0
	19SSB2404	4	0
CNC19-B25	19SSB2501	1	0
	19SSB2502	2	0
	19SSB2504	4	0
CNC19-B26	19SSB2602	2	4

Notes:

OVA - organic vapor analyzer equipped with a flame ionization detector

PPM - parts per million

ND - not detected

SUMMARY OF MOBILE LABORATORY SCREENING RESULTS FOR SOIL SITE 18, BUILDING 123 **ZONE G, FORMER CHARLESTON NAVAL COMPLEX** NORTH CHARLESTON, SOUTH CAROLINA

			Laboratory Screening Data (ug/kg) ⁽¹⁾								
Sample Location	Sample Identification	Sample Depth (feet)	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene	Diesel Range Organics (mg/kg)			
CNC18-B01	18SFB01-0203	2-3	<5.0	< 5.0	<5.0	<5.0	<5.0	<10			
CNC18-B02	18SFB02-0405	4-5	<5.0	<5.0	<5.0	<5.0	<5.0	<10			
CNC18-B03	18SFB03-0405	5-6	<5.0	<5.0	<5.0	<5.0	29	<10			
CNC18-B04	18SFB04-0405	4-5	<5.0	<5.0	<5.0	9.6	13	<10			
CNC18-B05	18SFB05-0809	8-9	<5.0	<5.0	<5.0	<5.0	<5.0	<10			

NOTES: (1) Laboratory screening data were analyzed using USEPA Method 8260. Compounds not detected are reported as less than the instrument detection limit.

ug/kg - micrograms per kilogram, except as noted.

mg/kg - milligrams per kilogram.

TABLE 5 - CONTINUED

SUMMARY OF MOBILE LABORATORY SCREENING RESULTS FOR SOIL **SITE 19, BUILDING 3909 ZONE G, FORMER CHARLESTON NAVAL COMPLEX** NORTH CHARLESTON, SOUTH CAROLINA

					Laboratory	Screening Data (ug/kg) ⁽¹⁾	
Sample Location	Sample Identification	Sample Depth (feet)	Benzene	Toluene	Ethylben zene	Total Xylenes	Naphthalene	Diesel Range Organics (mg/kg)
CNC19-B02	19SFB02-0406	5-6	<5.0	<5.0	<5.0	<5.0	<5.0	<10
CNC19-B03	19SFB03-0507	5-6	<5.0	<5.0	<5.0	<5.0	170	<10
CNC19-B04	19SFB04-0304	4-5	<5.0	<5.0	<5.0	<5.0	<5.0	<10
CNC19-B05	19SFB05-0405	5-6	<5.0	<5.0	<5.0	<5.0	<5.0	<10
CNC19-B06	19SFB06-0506	5-6	< 5.0	<5.0	<5.0	<5.0	93	55
CNC19-B08	19SFB08-0506	4-5	<5.0	<5.0	<5.0	5.6	460	<10
CNC19-B08 ⁽²⁾	19SFB08-0506	4-5	NA	NA	NA	NA	NA	<10
CNC19-B09	19SFB09-0405	4-5	<5.0	<5.0	<5.0	<5.0	620	140
CNC19-B10	19SFB10-0405	4-5	<5.0	<5.0	<5.0	<5.0	460	44
CNC19-B11	19SFB11-0405	4-5	<5.0	<5.0	<5.0	<5.0	700	300
CNC19-B12	19SFB12-0304	3-4	<5.0	<5.0	<5.0	<5.0	<5.0	<10
CNC19-B13	19SFB13-0405	3-4	<5.0	<5.0	<5.0	<5.0	<5.0	22
CNC19-B14	19SFB14-0203	3-4	<5.0	<5.0	<5.0	<5.0	<5.0	<10
CNC19-B15	19SFB15-0203	3-4	<5.0	<5.0	<5.0	<5.0	<5.0	16
CNC19-B15 ⁽²⁾	19SFB15-0203	3-4	<5.0	<5.0	<5.0	<5.0	<5.0	NA NA
CNC19-B16	19SFB16-0203	2-3	<5.0	<5.0	<5.0	<5.0	1300	150
`NC19-B16 ^(z)	19SFB16-0203	2-3	NA	NA	NA	NA	NA NA	176
CNC19-B17	19SFB17-0405	5-6	<5.0	<5.0	<5.0	<5.0	<5.0	23
CNC19-B17 ⁽²⁾	19SFB17-0405	5-6	NA	NA	NA	NA	NA	24
CNC19-B18	19SFB18-0304	3-4	<5.0	<5.0	<5.0	<5.0	<5.0	<10
CNC19-B18 ⁽²⁾	19SFB18-0304	3-4	<5.0	<5.0	<5.0	<5.0	<5.0	NA
CNC19-B19	19SFB19-0304	3-4	<5.0	<5.0	<5.0	<5.0	<5.0	<10
CNC19-B20	19SFB20-0304	3-4	<5.0	<5.0	<5.0	<5.0	27	<10
CNC19-B21	19SFB21-0304	3-4	<5.0	<5.0	<5.0	<5.0	<5.0	<10
CNC19-B22	19SFB22-0304	3-4	<5.0	<5.0	<5.0	<5.0	<5.0	<10

NOTES: (1) Laboratory screening data were analyzed using USEPA Method 8260. Compounds not detected are reported as less than the instrument detection limit.

(2) Duplicate Sample

ug/kg - micrograms per kilogram, except as noted.

mg/kg - milligrams per kilogram.

SUMMARY OF MOBILE LABORATORY SCREENING RESULTS FOR GROUNDWATER SITE 18, BUILDING 123 **ZONE G, FORMER CHARLESTON NAVAL COMPLEX** NORTH CHARLESTON, SOUTH CAROLINA

			Laboratory Screening Data (ug/kg) ⁽¹⁾									
Sample Location	Sample Identification	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene	Diesel Rang Organics (mg/kg)					
CNC18-B01	18GFB01-06	<1.0	<1.0	<1.0	<1.0	<1.0	0.1					
CNC18-B02	18GFB02-12	<1.0	<1.0	<1.0	<1.0	<1.0	<0.1					
CNC18-B02 ⁽²⁾	18GFB02-12	NA	NA	NA	NA	NA	<0.1					
CNC18-B03	18GFB03-08	<1.0	<1.0	<1.0	<1.0	23	NA					
CNC18-B04	18GFB04-09	<1.0	<1.0	<1.0	<1.0	10	0.4					
CNC18-B05	18GFB05-12	<1.0	<1.0	<1.0	<1.0	6.4	NA					

NOTES:

(1) Laboratory screening data were analyzed using USEPA Method 8260. Compounds not detected are reported as less than the instrument detection limit.

(2) Ouplicate sample

ug/kg - micrograms per kilogram, except as noted.

mg/kg - milligrams per kilogram. NA = Not analyzed

TABLE 6 - CONTINUED

SUMMARY OF MOBILE LABORATORY SCREENING RESULTS FOR GROUNDWATER **SITE 19, BUILDING 3909** ZONE G. FORMER CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

				Laboratory Scr	eening Data	(ug/L) ⁽¹⁾	_
Sample Location	Sample Identification	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene	Diesel Range Organics (mg/L)
CNC19-B02	19GFB02-08	<1.0	<1.0	<1.0	<1.0	<1.0	0.1
CNC19-B03	19GFB03-08	<1.0	<1.0	<1.0	3.1	120	3.4
CNC19-B04	19GFB04-08	<1.0	<1.0	<1.0	<1.0	5.8	0.8
CNC19-B05	19GFB05-08	<1.0	<1.0	<1,0	<1.0	3.1	0.7
CNC19-B06	19GFB06-08	<1.0	<1.0	1.8	<1.0	14	0.5
CNC19-B07	19GFB07-08	<1.0	<1.0	<1.0	<1.0	35	0.4
CNC19-B09	19GFB09-09	<1.0	<1.0	<1.0	1.3	130	1.6
CNC19-B10	19GFB10-10	<1.0	<1.0	<1.0	<1.0	22	6.0
CNC19-B11	19GFB11-07	1.5	<1.0	<1.0	<1.0	450	1.4
CNC19-B12	19GFB12-07	<1.0	<1.0	<1.0	<1.0	<1.0	0.2
CNC19-B13	19GFB13-07	6.5	<1.0	<1.0	2.9	1900	27
CNC19-B13 ⁽²⁾	19GFB13-07	NA	NA	NA	NA	NA	27
CNC19-B14	19GFB14-09	<1.0	<1.0	<1.0	<1.0	15	0.8
CNC19-B14 ⁽²⁾	19GFB14-09	<1.0	<1.0	<1.0	<1.0	7.9	NA
CNC19-B15	19GFB15-07	<1.0	<1.0	<1.0	<1.0	<1.0	0.3
CNC19-B16	19GFB16-07	32	<1.0	4.2	4.7	1400	2.9
CNC19-B17	19GFB17-11	<1.0	<1.0	<1.0	<1.0	<1.0	0.3
CNC19-B18	19GFB18-09	<1.0	<1.0	<1.0	<1.0	6.2	0.1
CNC19-B19	19GFB19-09	<1.0	<1.0	<1.0	<1.0	<1.0	<0.1
CNC19-B20	19GFB20-09	<1.0	<1.0	<1.0	<1.0	<1.0	0.1
CNC19-B21	19GFB21-09	3.1	<1.0	<1.0	1.9	1600	5.6
CNC19-B22	19GFB22-09	1.5	<1.0	<1.0	<1.0	28	1.2
CNC19-B22 ⁽²⁾	19GFB22-09	3.3	<1.0	<1.0	<1.0	44	1.1

NOTES: (1) Laboratory screening data were analyzed using USEPA Method 8260. Compounds not detected are reported as less than the instrument detection limit. (2) Duplicate Sample

ug/L - micrograms per liter, except as noted.

mg/L - milligrams per liter.

TABLE 7

SUMMARY OF FIXED-BASE LABORATORY ANALYTICAL RESULTS FOR CHEMICALS OF CONCERN IN SOIL SITE 18, BUILDING 123 ZONE G, CHARLESTON NAVAL COMPLEX

NORTH CHARLESTON, SOUTH CAROLINA

Soil Boring / Sample No.	Sample Date	Benzene (ug/kg)	Toluene (ug/kg)	Ethyl- benzene (ug/kg)	Xylenes (total) (ug/kg)	Benzo(a) anthracene (ug/kg)	Benzo(b) fluoranthene (ug/kg)	Benzo(k) fluoranthene (ug/kg)	Chrysene (ug/kg)	Dibenzo(a,h) anthracene (ug/kg)	Naphthalene (ug/kg)
RBSL (1)		5	1622	1260	42471	73084	29097	231109	12998	87866	210
CNC18-B01 / 18SLB010203	14-May-99	< 6	< 6	< 6	< 6	< 400	< 400	< 400	< 400	< 400	< 6
CNC18-B02 / 18SLB020405	14- M ay-99	< 6	< 6	< 6	< 6	< 460	< 460	< 460	< 460	< 460	< 6
CNC18-B03 / 18SLB030405	4-May-99	< 6	< 6	< 6	< 6	< 360	< 360	< 360	< 360	< 360	5 ^(J)
CNC18-B03 ⁽³⁾ / 18SLB030506D	17-May-99	< 7	< 7	< 7	4 ^(J)	< 400	< 400	< 400	< 400	< 400	3 ^(J)
CNC18-B04 / 18SLB040405	4-May-99	< 6	< 6	< 6	< 6	< 360	< 360	< 360	< 360	< 360	< 6
CNC18-B05 / 18SLB050406	14-May-99	< 10	< 10	< 10	< 10	< 530	< 530	< 530	< 530	< 530	< 10
CNC18-TL ⁽²⁾ / 1801TL00103	13-May-99	< 5	< 5	< 5	< 5	NA	NA.	NA.	NA NA	NA NA	< 5
CNC18-TL ⁽²⁾ / 1802TL00201	13-May-99	< 5	< 5	< 5	< 5	NA	NA	NA	NA NA	NA NA	< 5

All concentrations are in micrograms per kilograms (ug/kg).

⁽¹⁾ South Carolina Department of Health and Environmental Control Risk Based Screening Levels for sandy soils; depth to groundwater less than 5 feet.

⁽²⁾ Trip blank

⁽³⁾ Duplicate sample

⁽J) Indicates the presence of an analyte at a concentration less than the reporting limit and greater than the detection limit.

TABLE 7 - CONTINUED

SUMMARY OF FIXED-BASE LABORATORY ANALYTICAL RESULTS FOR CHEMICALS OF CONCERN IN SOIL SITE 19, AST 3909 ZONE G, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

Soil Boring / Sample No.	Sample Date	Benzene (ug/kg)	Toluene (ug/kg)	Ethyl- benzene (ug/kg)	Xylenes (total) (ug/kg)	Benzo(a) anthracene (ug/kg)	Benzo(b) fluoranthene (ug/kg)	Benzo(k) fluoranthene (ug/kg)	Chrysene (ug/kg)	Dibenzo(a,h) anthracene (ug/kg)	Naphthalene (ug/kg)
RBSL (1)		5	1622	1260	42471	73084	29097	231109	12998	87866	210
CNC19-B03 / 19SLB030506	14-May-99	< 6	< 6	< 6	< 6	< 530	< 530	< 530	< 530	< 530	< 6
CNC19-B06 / 19SLB060506	14-May-99	< 6	< 6	< 6	< 6	< 430	< 430	< 430	< 430	< 430	< 6
CNC19-B08 / 19SLB080405	14-May-99	< 6	< 6	56	92	< 4600	< 4600	< 4600	< 4600	< 4600	7250 ^(J)
CNC19-B09 ⁽³⁾ / 19SLB090405	14-May-99	< 6	< 6	< 6	< 6	< 500	< 500	< 500	< 500	< 500	660
CNC19-B09 / 19SLB090405D	14- M ay-99	< 900	< 900	< 900	< 900	< 500	300 ^(J)	< 500	260 ^(J)	< 500	1500
CNC19-B10 / 19SLB100405	4-May-99	< 850	< 850	< 850	< 850	< 530	< 530	< 530	< 530	< 530	5500
CNC19-B11 / 19SLB110405	4-May-99	< 6	< 6	< 6	6 ^(J)	< 400	< 400	< 400	< 400	< 400	200 ^(J)
CNC19-B16 / 19SLB160203	14-May-99	< 7	< 7	< 7	< 7	< 460	< 460	< 460	< 460	< 460	5 ^(J)

All concentrations are in micrograms per kilograms (ug/kg).

⁽¹⁾ South Carolina Department of Health and Environmental Control Risk Based Screening Levels for sandy soils; depth to groundwater less than 5 feet.

⁽²⁾ Trip blank

⁽³⁾ Duplicate sample

⁽d) Indicates the presence of an analyte at a concentration less than the reporting limit and greater than the detection limit.

TABLE 7- CONTINUED

SUMMARY OF FIXED-BASE LABORATORY ANALYTICAL RESULTS FOR CHEMICALS OF CONCERN IN SOIL SITE 19, AST 3909 ZONE G, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

Soil Boring / Sample No.	Sample Date	Benzene (ug/kg)	Toluene (ug/kg)	Ethyl- benzene (ug/kg)	Xylenes (total) (ug/kg)	Benzo(a) anthracene (ug/kg)	Benzo(b) fluoranthene (ug/kg)	Benzo(k) fluoranthene (ug/kg)	Chrysene (ug/kg)	Dibenzo(a,h) anthracene (ug/kg)	Naphthalene (ug/kg)
RBSL (1)		5	1622	1260	42471	73084	29097	231109	12998	87866	210
CNC19-TL ⁽²⁾ / 19TL00101	3-May-99	< 5	< 5	< 5	< 5	NA	NA NA	NA NA	NA.	NA	< 5
CNC19-TL ⁽²⁾ / 1902TL00201	13-May-99	< 5	< 5	< 5	< 5	NA	NA NA	NA	NA	NA	< 5

All concentrations are in micrograms per kilograms (ug/kg).

⁽¹⁾ South Carolina Department of Health and Environmental Control Risk Based Screening Levels for sandy soils; depth to groundwater less than 5 feet.

⁽²⁾ Trip blank

⁽³⁾ Duplicate sample

⁽J) Indicates the presence of an analyte at a concentration less than the reporting limit and greater than the detection limit.

TABLE 8

SUMMARY OF FIXED-BASE LABORATORY ANALYTICAL RESULTS FOR CHEMICALS OF CONCERN IN GROUNDWATER SITE 18, BLDG 123 and AST 3909 ZONE G, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

Monitoring Well/ Sample No.	Sample Date	Benzene (ug/L)	Ethyl- benzene (ug/L)	Toluene (ug/L)	Xylenes (total) (ug/L)	Naphthalene (ug/L)	Benzo(a) anthracene (ug/L)	Benzo(b) fluoranthene (ug/L)	Benzo(k) fluoranthene (ug/L)	Chrysene (ug/L)	dibenzo(a,h) anthracene (ug/L)	MTBE (ug/L)
RBSL ⁽¹⁾		5	700	1000	10000	10 ⁽²⁾	10 ⁽²⁾	10 ⁽²⁾	10 ^{{2}	10 ⁽²⁾	10 ⁽²⁾	40
CNC18M-01 / 18GLM0101	9-Sep-99	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10	< 5
CNC18M-02 / 18GLM0201	9-Sep-99	3 ^(J)	< 5	< 5	4 ^(J)	137	< 10	< 10	< 10	< 10	< 10	< 5
CNC18M-02 / 18GLM0201D	9-Sep-99	< 5	< 5	< 5	3 ^(J)	227	< 10	< 10	< 10	< 10	< 10	< 5
CNC18O-1E / 18GLO1E01	9-Sep-99	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10	< 5
CNC18O-1F / 18GLO1F01	9-Sep-99	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10	< 5
CNC18M-03 / 18GLM03D01	9-Sep-99	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10	< 5
CNC18TL ⁽³⁾ / 18TL00101	9-Sep-99	< 5	< 5	< 5	< 5	< 5	NA	NA	NA NA	NA	NA	< 5

All concentrations are in ug/L.

⁽¹⁾ South Carolina Department of Health and Environmental Control Risk Based Screening Levels for ground water.

⁽²⁾ The Risk based screening level for individual PAH CoC is 10 ug/l or 25 ug/l for total PAHs.

⁽³⁾ Trip blank

⁽J) Indicates presence of analyte at a concentration less than the reporting limit and greater than the detection limit.

TABLE 8 - CONTINUED

SUMMARY OF FIXED-BASE LABORATORY ANALYTICAL RESULTS FOR CHEMICALS OF CONCERN IN GROUNDWATER SITE 18, BLDG 123 and AST 3909 ZONE G, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

Monitoring Well/ Sample No.	Sample Date	Lead (ug/L)	Arsenic (ug/L)	Barium (ug/L)	Cadmium (ug/L)	Total Chromium (ug/L)	Mercury (ug/L)	Selenium (ug/L)	Silver (ug/L)
RBSL ⁽¹⁾		15	50	2000	5	100	2	50	5
CNC18M-01 / 18GLM0101	9-Sep-99	< 1.2	< 2.07	114	< 1.94	< 4.31	< 0.02	< 2.57	< 2.54
CNC18M-02 / 18GLM0201	9-Sep-99	< 1.7	< 3.6	18.8	< 1.94	< 4.31	< 0.02	< 2.57	< 2.54
CNC18M-02 / 18GLM0201D	9-Sep-99	< 1.09	< 2.07	27.3	< 1.94	< 4.31	< 0.02	< 2.57	< 2.54
CNC18M-03 / 18GLM03D01	9-Sep-99	< 3.27	< 6.21	58.4	< 1.94	< 4.31	< 0.02	< 7.71	< 2.54
CNC18O-1F / 18GLO1F01	9-Sep-99	< 1.09	20.3	59.4	< 1.94	< 4.31	< 0.02	< 2.57	< 2.54

All concentrations are in ug/L.

⁽¹⁾ South Carolina Department of Health and Environmental Control Risk Based Screening Levels for ground water.

TABLE 8 - CONTINUED

SUMMARY OF FIXED-BASE LABORATORY ANALYTICAL RESULTS FOR CHEMICALS OF CONCERN IN GROUNDWATER SITE 19, AST 3909

ZONE G, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

Monitoring Well/ Sample No.	Sample Date	Benzene (ug/L)	Ethyl- benzene (ug/L)	Toluene (ug/L)	Xylenes (total) (ug/L)	Naphthalene (ug/L)	Benzo(a) anthracene (ug/L)	Benzo(b) fluoranthene (ug/L)	Benzo(k) fluoranthene (ug/L)	Chrysene (ug/L)	dibenzo(a,h) anthracene (ug/L)	MTBE (ug/L)
RBSL ⁽¹⁾		5	700	1000	10000	10 ⁽²⁾	10 ⁽²⁾	10 ⁽²⁾	1() (2)	10 ⁽²⁾	10 (2)	40
CNC19M-01 / 19GLM0101	6-Aug-99	15	< 5	< 5	< 5	98	< 10	< 10	< 10	< 10	< 10	< 5
CNC19O-1B / 19GLO1B01	9-Sep-99	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10	< 5
CNC19O-1D / 19GLO1D01	9-Sep-99	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10	< 5
CNC19O-1C / 19GLO1C01	9-Sep-99	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10	< 5
CNC19M-02 / 19GLM0201	6-Aug-99	< 5	< 5	< 5	< 5	14	< 10	< 10	< 10	< 10	< 10	< 5
CNC19M-03 / 19GLM0301	9-Sep-99	< 5	< 5	< 5	< 5	12	< 10	< 10	< 10	< 10	< 10	< 5
CNC19M-04 / 19GLM0401	6-Aug-99	4 ^(J)	< 5	< 5	4 ^(J)	157	< 10	< 10	< 10	< 10	< 10	< 5
CNC19M-05 / 19GLM0501	10-Aug-99	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10	< 5
CNC19M-06 / 19GLM0601	9-Sep-99	< 5	< 5	< 5	< 5	< 5	< 10	< 10	< 10	< 10	< 10	< 5

All concentrations are in ug/L.

⁽¹⁾ South Carolina Department of Health and Environmental Control Risk Based Screening Levels for ground water.

⁽²⁾ The Risk based screening level for individual PAH CoC is 10 ug/l or 25 ug/l for total PAHs.

⁽³⁾ Trip blank

⁽J) Indicates presence of analyte at a concentration less than the reporting limit and greater than the detection limit.

COMPARISON OF MAXIMUM CONCENTRATIONS TO RBSLs SITE 18, UST 123 and Site 19, AST 3909 ZONE G, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

Chemical of Concern	Maximum Concentration in Soil (mg/kg)	Soil RBSLs (mg/kg) ^(a)	Maximum Concentration in GW (mg/L)	Tier 1 GW RBSLs (mg/L) ^(b)	GW RBSLs Protective of On- Site Construction Worker ^(c)
Benzene	<0.9	0.005	0.31 ^(d)	0.005	0.15
Toluene	<0.9	1.622	4.65 ^(d)	1	5.38
Ethybenzene	<0.9	1.260	0.1 ^(d)	0.7	6.05
Xylenes	<0.9	42.471	0.79 ^(d)	10	102.33
Benzo(a)anthracene	<4.6	73.084	-	0.010	-
Benzo(b)fluoranthene	<4.6	29.097	-	0.010	*
Benzo(k)fluoranthene	<4.6	231.109	-	0.010	-
Chyrsene	<4.7	12.998	-	0.010	-
Dibenzo(a,h)anthracene	<4.6	87.866	-	0.010	_
Naphthalene	7.25	0.21	23.35 ^(d)	0.010	1.63

- (a) From Risk-Based Corrective Action for Petroleum Releases, Table B4, Sandy Soil, Depth to GW <5 ft, SCDHEC RBCA Guidelines, 1998.
- (b) From Risk-Based Corrective Action for Petroleum Releases, Table B1, SCDHEC RBCA Guidelines, 1998.
- (c) Calculated for dermal, incidental ingestion, and inhalation routes for the on-site construction worker (see Section 3.5.1 of the text and Appendix H).
- (d) Groundwater concentration in equilbrium with free product as calculated using Raoult's Law (see Appendix F).

GW - Groundwater

RBSLs - Risk Based Screening Levels

ND - Not detected

NA - Not analyzed

Bold value indicates the concentration exceeded one of the RBSLs.

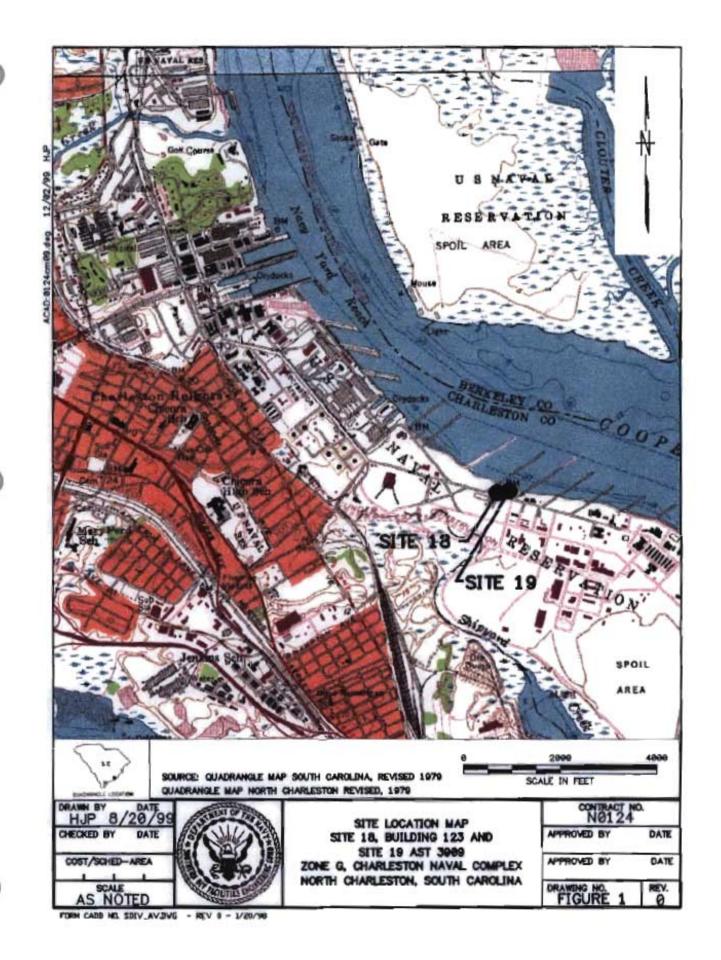
EXPOSURE PATHWAY ASSESSMENT - CURRENT LAND USE SITE 18, UST 123 and Site 19, AST 3909 ZONE G, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

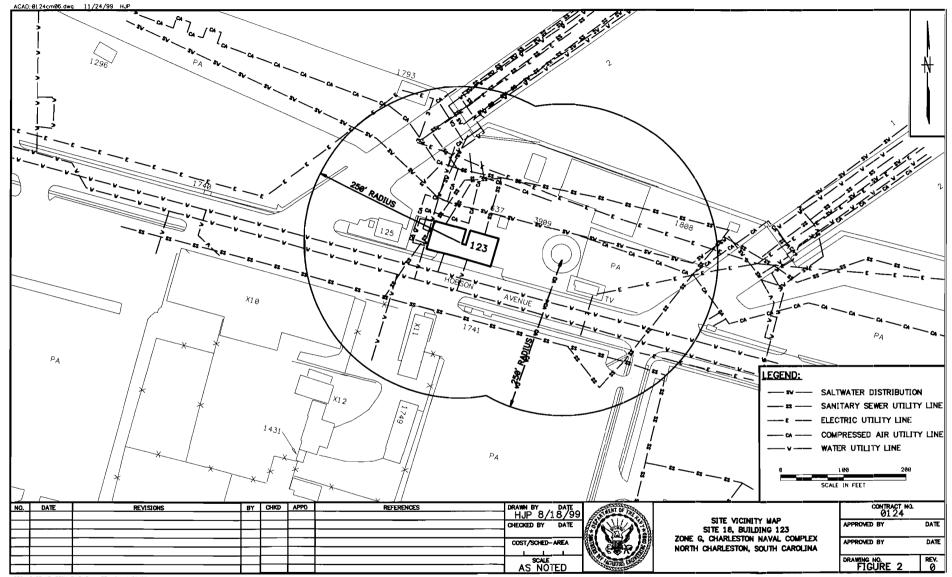
Media	Exposure Route	Pathway Selected for Evaluation? (Yes or No)	Exposure point or Reason for Non- Selection	Data Requirements (If pathway selected)
Air	Inhalation	No	No volatilization to enclosed space.	
	Explosion Hazard	No	No explosion hazard.	
Groundwater	Ingestion	No	No water supply well downgradient or	
	Dermal contact	No	residential basements.	
	Inhalation	No		
Surface Water	Ingestion	No	Cooper River 200 ft downgradient	No additional data required
	Dermal contact	No		·
	Inhalation	No		
Surficial Soil	Ingestion	No	No impacted surface soil	
	Dermal contact	No		
	inhalation	No		
Subsurface Soil	Ingestion	No	No subsurface soil with BTEX or PAHs including	
	Dermal contact	No	naphthalene above RBSLs	
	Inhalation	No		

EXPOSURE PATHWAY ASSESSMENT - FUTURE LAND USE SITE 18, UST 123 and Site 19, AST 3909 ZONE G, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

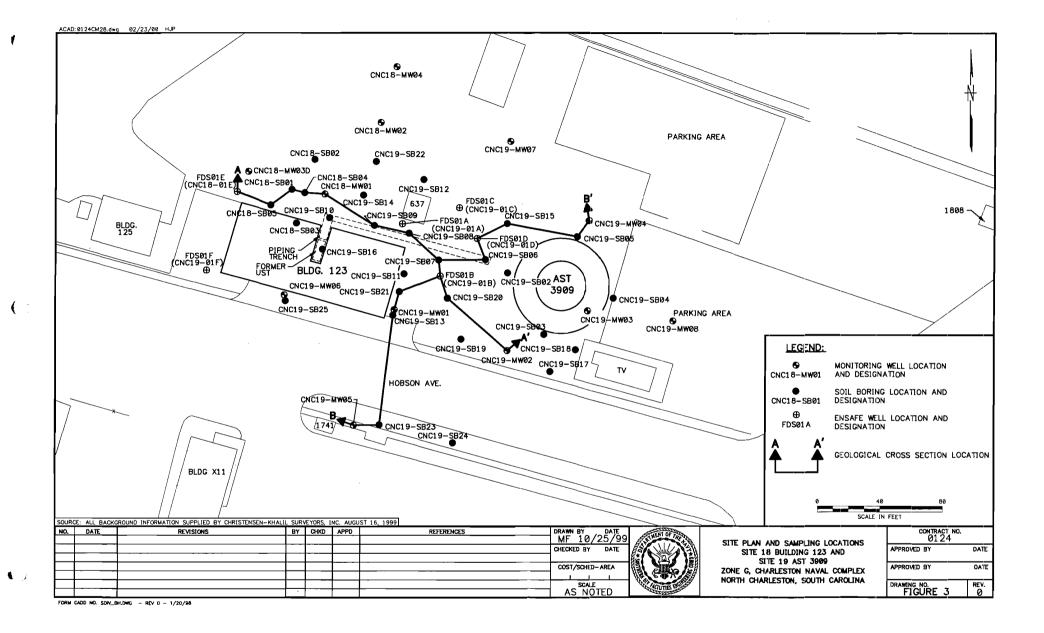
Media	Exposure Route	Pathway Selected for Evaluation? (Yes or No)	Exposure point or Reason for Non- Selection	Data Requirements (If pathway selected)
Air	Inhalation	No	No volatilization to	
	Explosion Hazard	No	enclosed space. No explosion hazard.	
Groundwater	Ingestion	Yes	Future use of property	
	Dermal contact	Yes	expected to be industrial or commercial. Water line within 5 ft of free product	
	Inhalation	Yes	plume; therefore, construction worker exposure possible.	
Surface Water	Ingestion	Yes	Cooper River 200 ft	No additional data
	Dermal contact	No	downgradient	required
	Inhalation	No		
Surficial Soil	Ingestion	No	No impacted surface soil	<u> </u>
Ī	Dermal contact	No		
	Inhalation	No		
Subsurface Soil	Ingestion	Yes	Construction worker expsoed to soils during	No additional data required
	Dermal contact	Yes	digging/trenching.	requires
	Inhalation	No	Inhalation not considered due to volatile loss during digging; no confined space entry; and low volatility of naphthalene	

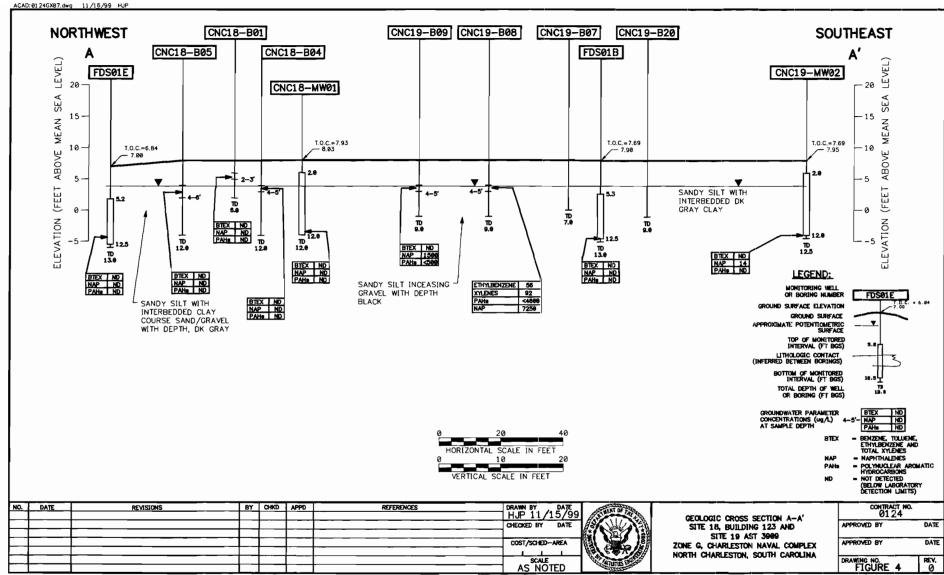
COMPARISON OF MAXIMUM GROUNDWATER CONCENTRATIONS TO SSTLs

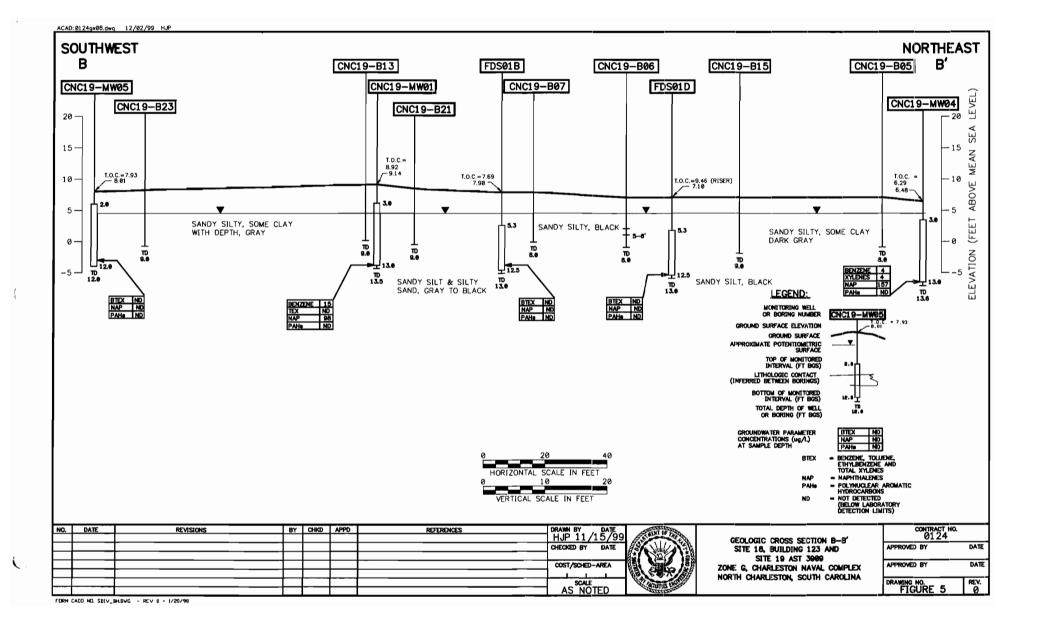

SITE 18, UST 123 and Site 19, AST 3909 ZONE G, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

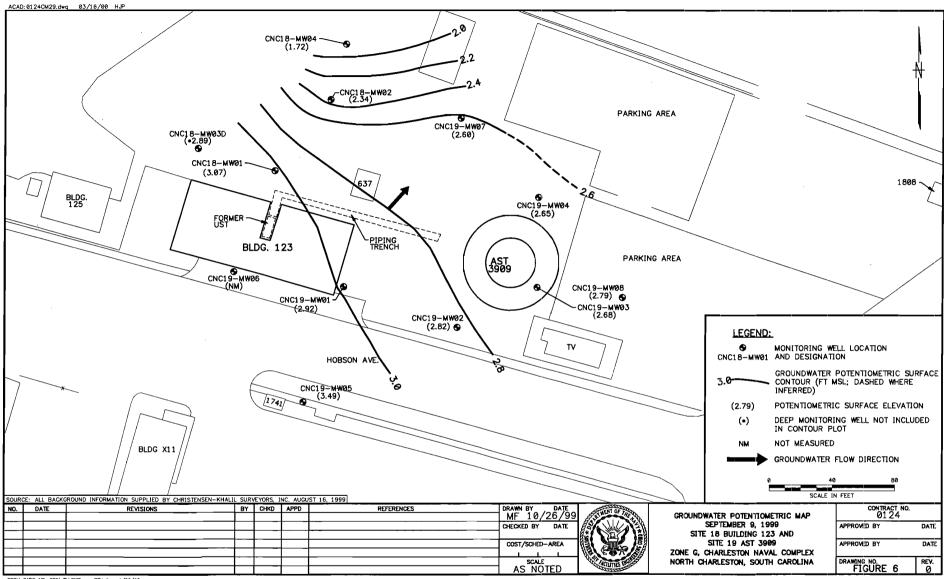

Chemical of Concern	Thoeretical Source Area Concentration (mg/L) (a) Maximum Concentration Detected in Groundwater			ctive of Surface	SSTLs Protective of Construction Workers	Minimum On-Site SSTLs ^(b)
	(mg/c)	(mg/L)	SSTL _{SOURCE}	SSTLCOMP	SSTL _{SOURCE}	
		, o ,	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Benzene	0.31	0.003	0.053	0.031	0.15	0.053
Toluene	4.65	<0.005	10.617	6.228	5.38	5.38
Naphthalene	23.35	0.227	0.106	0.062	1.63	0.106

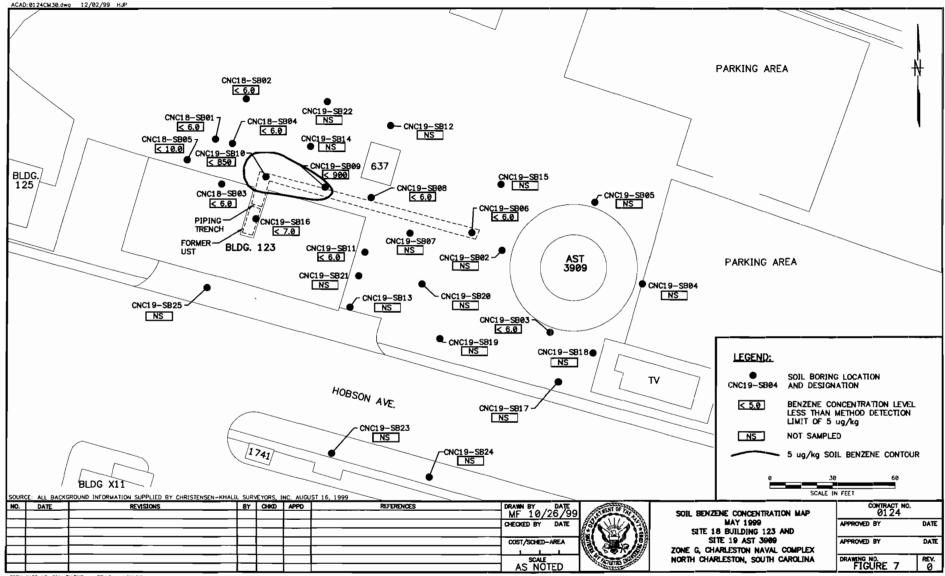
(a) Concentration based on equilibrium of free product with groundwater mg/L - milligrams per liter

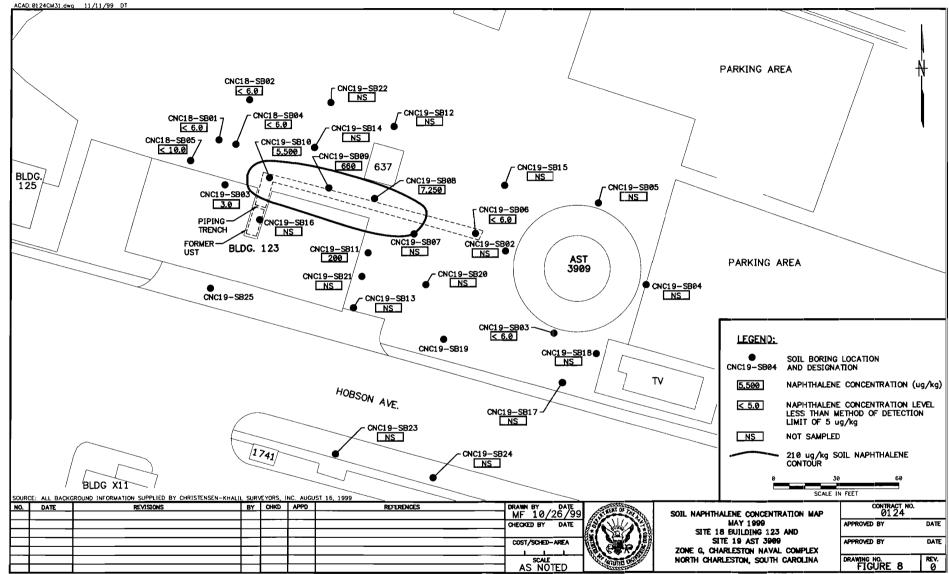

Bold value indicates the concentration exceeded the SSTL.


(b) The minimum on-site SSTLs are chosen as those SSTLs protective of both surface water (the Cooper River) and the on-site construction worker.

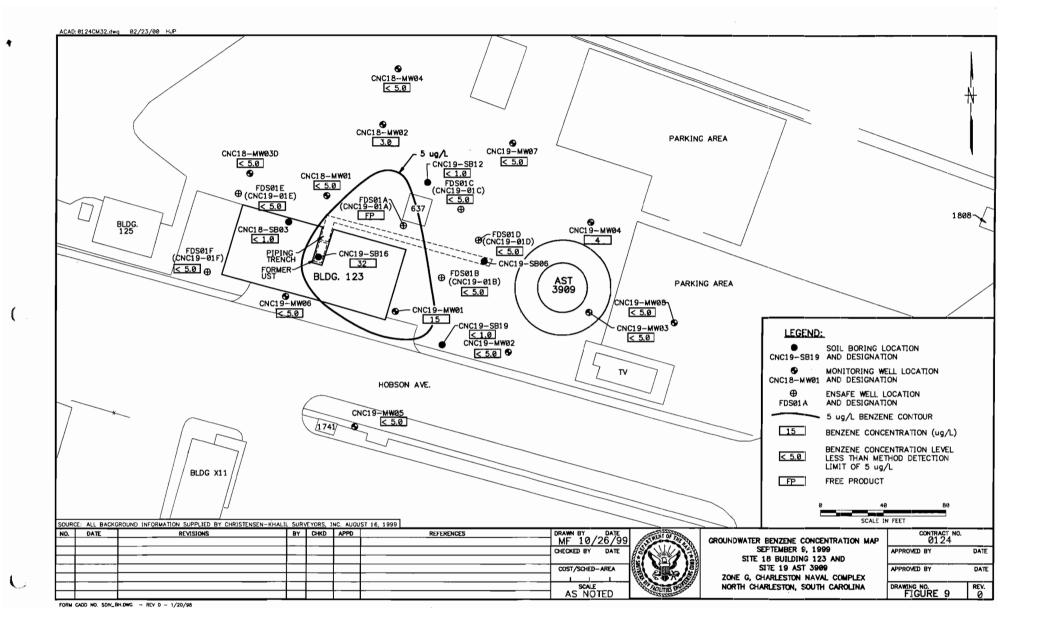


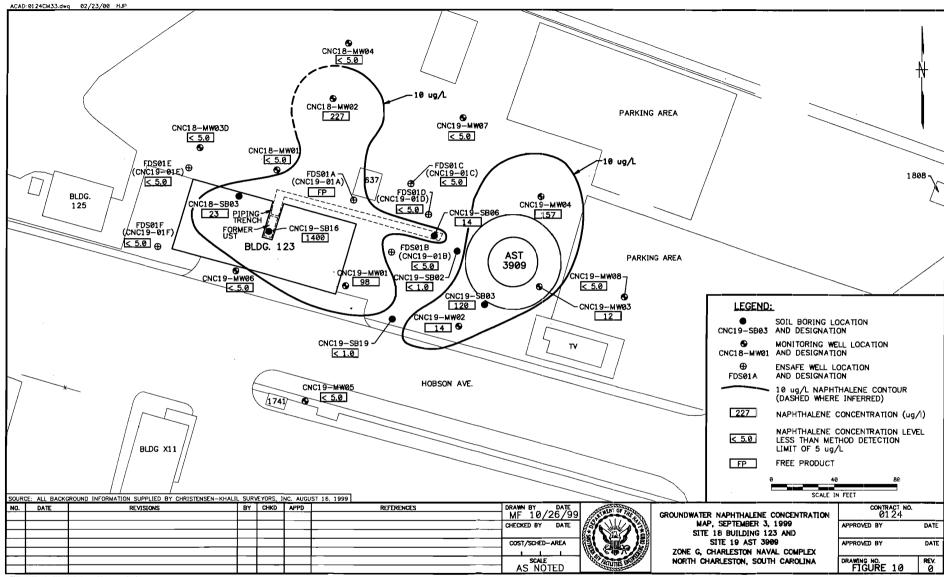

LOSH CADD MOT 2DIA" BHIDAC - MEA 0 - 1/50/88


FORM CADD NO. SDIV_BHDVG - REV 0 - 1/20/98

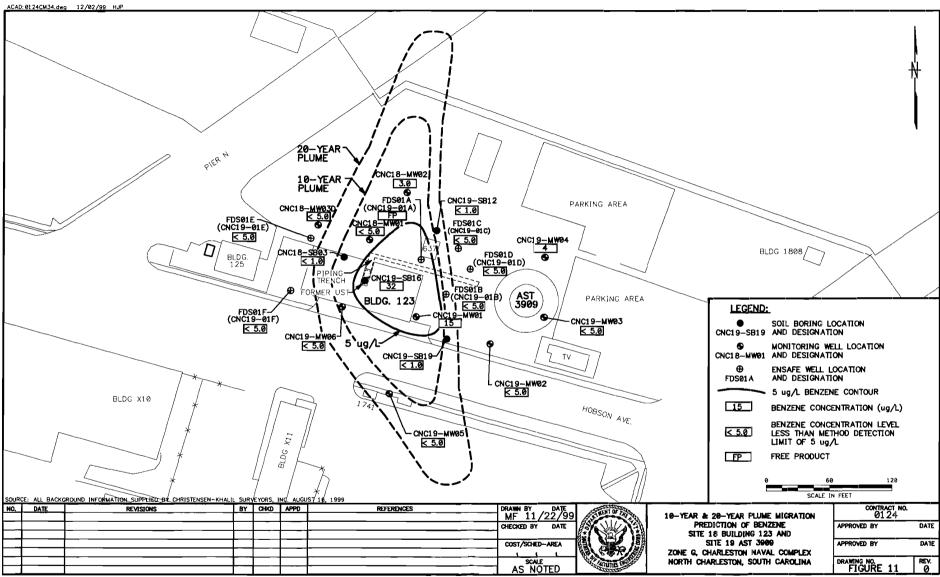


FORM CADD NO. SDIV_BH.DWG - REV 0 - 1/20/98


1



FORM CADD NO. SDIV_BH.DWG - REV D - 1/20/98



FORM CADD NO. SDIV_BH.DWG - REV 0 - 1/20/98

FORM CADO NO. SDIV_BH.DWG ~ REV 0 - 1/20/98

FORM CADO NO. SDIV_BH.DWG - REV 0 - 1/20/98

APPENDIX A

UNDERGROUND STORAGE TANK ASSESSMENT REPORT
UST 123 and AST 3909

Commissioner: Douglas E. Bryant

Board: John H. Burriss, Chairman William M. Hull, Jr., Nr. Vice Chairman Roger Leaks, Jr., Secietary

Promoting Health, Protecting the Environment

Richard E. Jabbour, DOS Cyndi C. Mosteller Brian K. Smith Rodnoy L. Grandy

Mr. Gabriel L. Magwood
Southern Division NFEC
P.O. Box 190010
2155 Eagle Drive
North Charleston, South Carolina 29419-9010

Re: Assessment Report dated October 17, 1996

Charleston Naval Base Building # 123 (Site Identification # 19/63) (Zone 6)

Charleston County

Date: December 17, 1996

Dear Mr. Magwood:

The author has completed technical review of the referenced document. As submitted, the report provides analytical results of environmental sampling conducted to determine if releases have occurred from operation of the referenced underground storage tank system. The results presented indicate elevated levels of polynuclear aromatic hydrocarbons (PAH) and RCRA metals (total) were detected in areas of the tank pit (soils) and elevated levels of RCRA metals detected in groundwater. The results exceed the levels proposed in the Soil Corrective Action Plan (dated July 18, 1996) and established Maximum Contaminant Levels (uril) for drinking water and appear to necessitate additional endeavors for remedial actions (soils removal) and contamination characterization (assessment activities, including groundwater investigations), as appropriate. In this regard, assessment/corrective action activities provided in the Tank Management Plan (dated October 18, 1996) should be implemented in an appropriate and timely manner. Please be reminded that groundwater sampling (if necessary) will require construction of sampling points and will need to be submitted for prior review and appropriate.

Should you have any questions, please contact me at (803) 734-5328.

Sincerely,

Paul L. Bristol, Hydrogeologist

Groundwater Assessment and Development Section

Bureau of Water

cc: Trident

Trident District EQC

Adive CAP ?

UST ASSESSMENT REPORT UST 123-1 NAVAL BASE CHARLESTON CHARLESTON SC

- 1000 gal waste oil instigra - pet stained soils - odor - sheen on GW - Naph > RBSL in soil & GW

Prepared for:

DEPARTMENT OF THE NAVY
SOUTHERN DIVISION
NAVAL FACILITIES ENGINEERING COMMAND
CHARLESTON SC

Prepared by:

SUPERVISOR OF SHIPBUILDING, CONVERSION AND REPAIR, USN, PORTSMOUTH DETACHMENT ENVIROMENTAL CHARLESTON, &C 1899 NORTH HOBSON AVE. NORTH CHARLESTON SC 29405-2106

October 17, 1996

South Carolina Department of Health and Environmental Control (S.C.D.H.E.C.) Underground Storage Tank (UST) Assessment Report

5.1251 91 0 5112 0 557 112	a imir (001) vəsesəmetif Labor
Date Received State Use Only	Submit Completed Form to: UST Regulatory Section SCDHEC 2600 Bull Street Columbia, South Carolina 29201
State Ose Only	Telephone (803) 734-5331
I OWNERSHIP OF UST(S)	
Agency/Owner: Southern Division, Naval Facilit	ies Engineering Command, Caretaker Site Office
Mailing Address: P.O. Box 190010	
City: N. Charleston State: S	C Zip Code: 29419-9010
Area Code: 803 Telephone Number: 7	43-9985 Contact Person: LCDR Paul Rose
II SITE IDENTIFICATION AND	LOCATION
Site I.D. #: 16763	
Facility Name: Charleston Naval Base Co	omplex, Building 123
Street Address: South Hobson Avenue	
City: North Charleston, 29405-	2413 County: Charleston
III CLOSURE INFORMATION	
Closure Started: 19 June 1996	Closure Completed: 20 June 1996
Number of USTs Closed:	<u> </u>
N/A	SPORTENVDETCHASN
Consultant	UST Removal Contractor
IV. CERTIFICATION (Read and Sig	n after completing entire submittal)
I certify that I have personally assemined and are furnillar with the information submitted in this and this information. I believe that he submated information is true, accurate and complete.	all attached documents: and that based on my inquiry of those individuals responsible for obtaining
LCDR Paul Rose	
Name (Type or Print)	
Signature	
0.5.mm.	

	v. UST INFORMATION	Tank 1	Tank 2	Tank 3	Tank 4	Tank 5	Tank 6
Α.	Product	Waste Oil					
В.	Capacity	1,000 gal.					_
C.	Age	7/1977					
D.	Construction Material	Steel					
E.	Month/Year of Last Use	Unk.		_			
F.	Depth (ft.) To Base of Tank	10'					
G.	Spill Prevention Equipment Y/N	N		_		_	
H.	Overfill Prevention Equipment Y/N	N					
I.	Method of Closure Removed/Filled	R					_
J.	Visible Corrosion or Pitting Y/N	N					
K.	Visible Holes Y/N	N	ľ				
L.	Method of disposal for any USTs removed fr	om the or	ound (attach (disnosa	l manife	-ete)

osal for any USTs removed from the ground (attach disposal manifests)

The UST was removed from the ground, drained, and cleaned. It was then cut up for recycling as scrap metal. See Attachment III.

M. Method of disposal for any liquid petroleum, sludges, or waste waters removed from the USTs (attach disposal manifests)

The residual waste oil was shipped out as non-regulated sludge.

N. If any corrosion, pitting, or holes were observed, describe the location and extent for each UST

The tank was in good condition. It did not appear to have any holes or leaks.

VI. PIPING INFORMATION

into a waste oil collection truck.

		1 alix 1	1 MIK Z	Laujus	1 2003 4	1 ank 3	I ank o
A.	Construction Material	Steel					
B.	Distance from UST to Dispenser	4'	<u>-</u>				
C.	Number of Dispensers	1					
D.	Type of System P/S	N/A*					
E.	Was Piping Removed from the Ground? Y/N	Y			_		
F.	Visible Corrosion or Pitting Y/N	N			-		
G.	Visible Holes Y/N	N	ı			3	
H.	Age	> 20 yrs					
	*UST 123-1 was a gravity fed waste oil tank for an oil/water separator. The tank was emptied periodically by suctioning		I				

I. If any corrosion, pitting, or holes were observed, describe the location and extent for each line.

No corrosion, pitting, or holes were found in the UST piping. The water in the excavation came from a slow leak in the 4" cast iron sewer line that ran above UST 123-1. This line was cut and capped during excavation. See Attachment I, Site Map Number 2.

VII. BRIEF SITE DESCRIPTION AND HISTORY

Bldg 123 is a former Boiler House that supplied steam to ships and parts of the Naval Base. UST 123-1 was a regulated 1,000 gallon underground storage tank on the east side of the building. The UST stored waste oil from an oil/water separator.

AST 3909 is located approximately 150 feet from the UST 123-1 site. The 200,000 gallon tank supplied fuel oil to the boilers in Bldg 123 via underground piping. See Site Map Number 4.

VIII. SITE CONDITIONS

Yes No Unk

A .	Were any petroleum-stained or contaminated soils found in the UST excavation, soil borings, trenches, or monitoring wells? If yes, indicate depth and location on the site map. [*3'-10']	X*	
В.	Were any petroleum odors detected in the excavation, soil borings, trenches, or monitoring wells?		
	If yes, indicate location on site map and describe the odor (strong, mild, etc.) [*mild]	X*	
C.	Was water present in the UST excavation, soil borings, or trenches?		
	If yes, how far below land surface (indicate location and depth)? UST excavation, 6" deep. See Note 1.	x	
D.	Did contaminated soils remain stockpiled on site after closure?		
	If yes, indicate the stockpile location on the site map.		
	Name of DHEC representative authorizing soil removal: See Note 2.	x	
E.	Was a petroleum sheen or free product detected on any excavation or boring waters?		
	If yes, indicate location and thickness. [*No appreciable thickness]	X*	

Note 1: A condensate tank draining evolution was taking place from within Building 123 concurrent with the UST removal. The water drained into a broken sewer line that ran above the UST and dumped into the excavation.

Note 2: The contaminated soil is located at Bldg 123. Per conversation with DHEC, Mr. Tim Mettlen, and Mr. Gabriel Magwood of SouthDiv, the entire naval complex is considered the site.

IX. SAMPLE INFORMATION

S.C.D.H.E.C. Lab Certification Number ____ 10120

Sample #	Location	Sample Type (Soil/Water)	Depth*	Date/Time of Collection	Collected By	OVA#
SPORT 0082-1	East end of tank.	Soil	9'	20 June 96 1500	W. Nesbit	Not Taken
SPORT 0082-2	West end of tank.	Soil	9'	20 June 96 1500	W. Nesbit	Not Taken
SPORT 0082-3	Western portion of ground water pool.	Water	10'	20 June 96 1500	W. Nesbit	Not Taken
	·					
						
			-			
				l ļ		

^{* =} Depth Below the Surrounding Land Surface

X. SAMPLING METHODOLOGY

Provide a detailed description of the methods used to collect and store (preserve) the samples.

After the removal of UST123-1 soil and ground water samples were taken. Sampling was performed in accordance with SC DHEC R.61-92 Part 280 and SC DHEC UST Assessment Guidelines.

The samples are identified as follows:

	Detachment Charleston	General Engineering Labs
Soil Sample	UST123-1-1 =	SPORT -0082-1
Soil Sample	UST123-1-2 =	SPORT -0082-2
Ground Water Sample	UST123-1-3 =	SPORT -0082-3

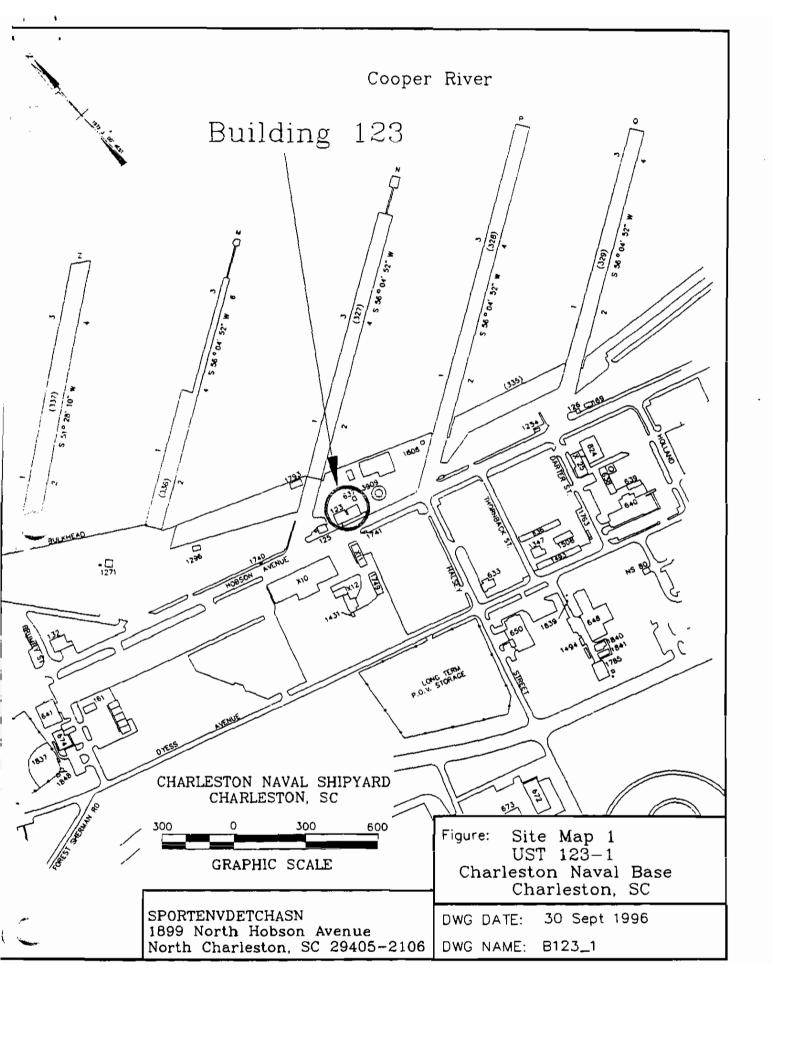
Sample jars were prepared by the testing laboratory. The grab method was utilized to fill the sample containers leaving as little head space as possible and immediately capped. Soil samples were extracted at the tank ends above the ground water level. The ground water sample was taken from the western portion of the ground water pool.

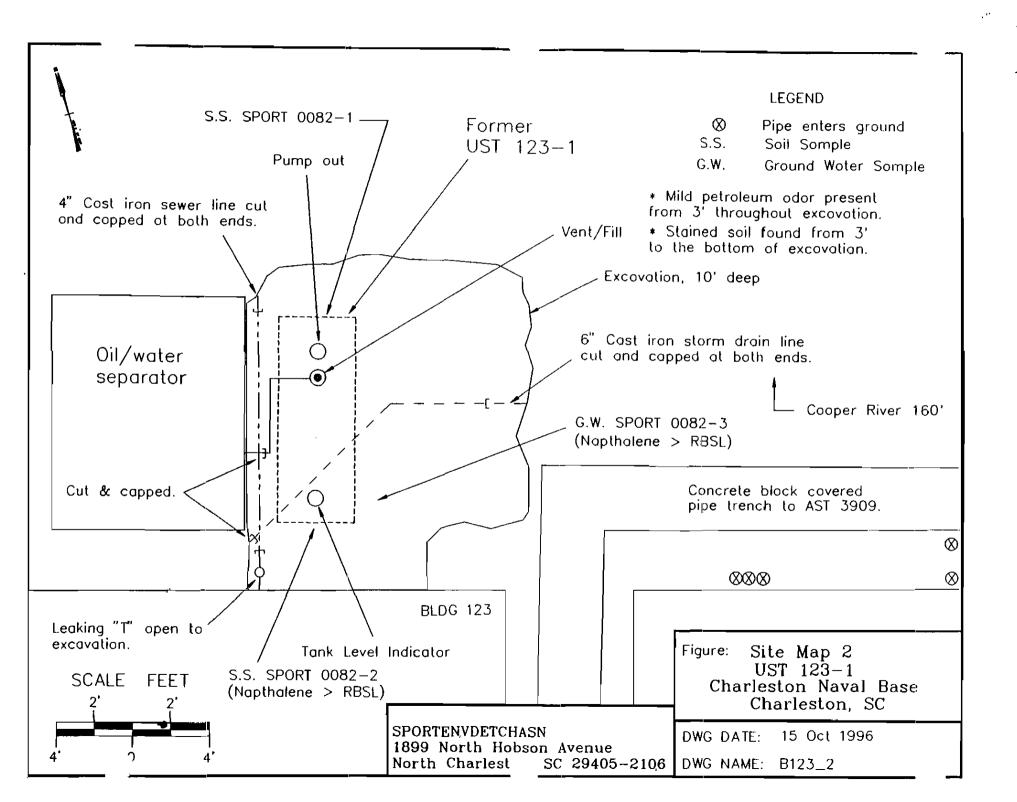
The samples were marked, logged, and immediately placed in sample coolers packed with ice to maintain an approximate temperature of 4° C. Tools were thoroughly cleaned and decontaminated with organic-free soap and water after each sample.

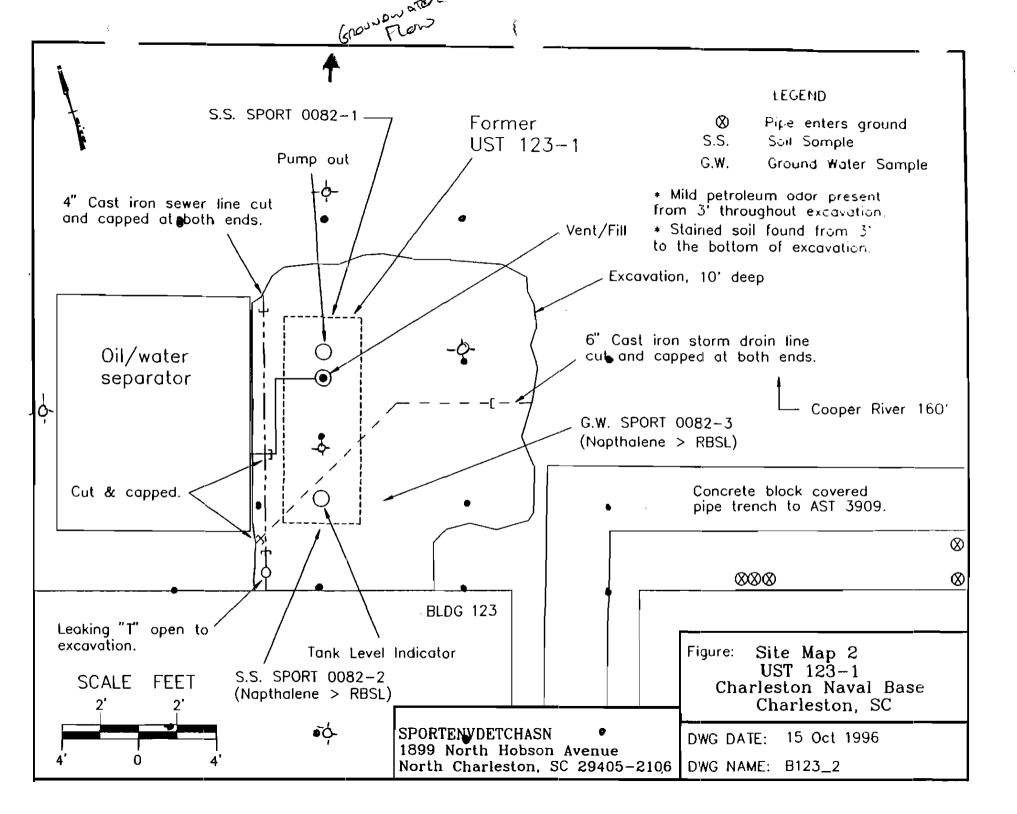
The samples remained in the custody of SPORTENVDETCHASN until they were transferred to General Engineering Laboratories for analysis as documented in the attached Chain-of-Custody Record.

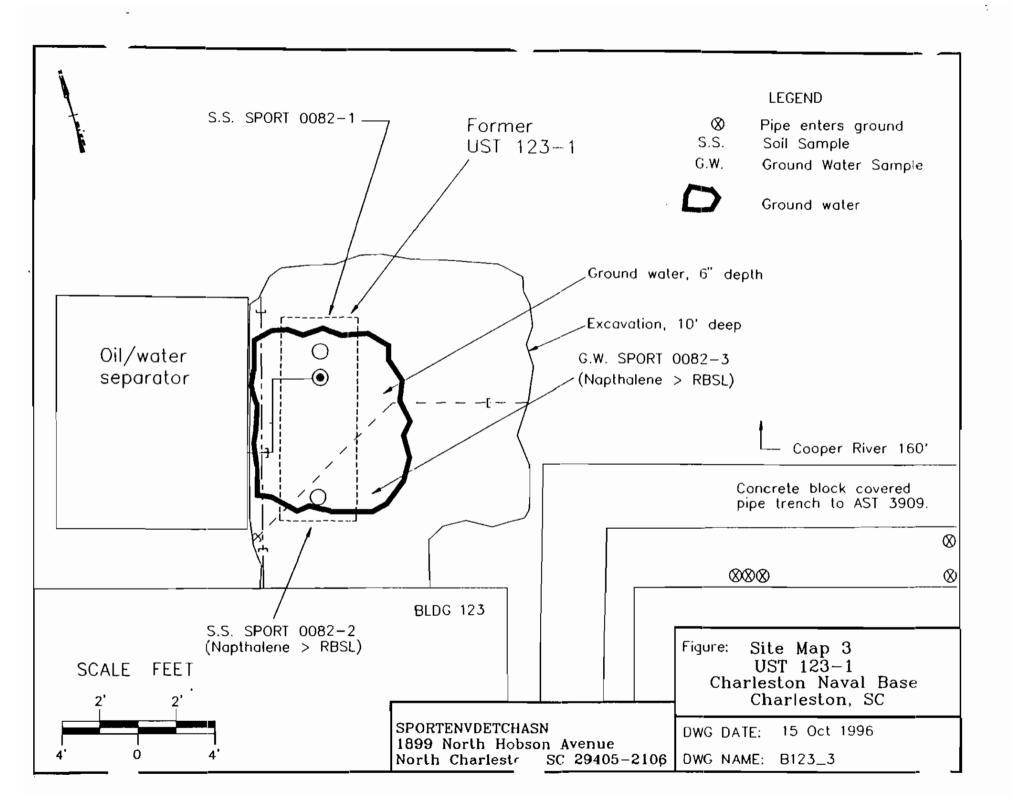
XI. RECEPTORS

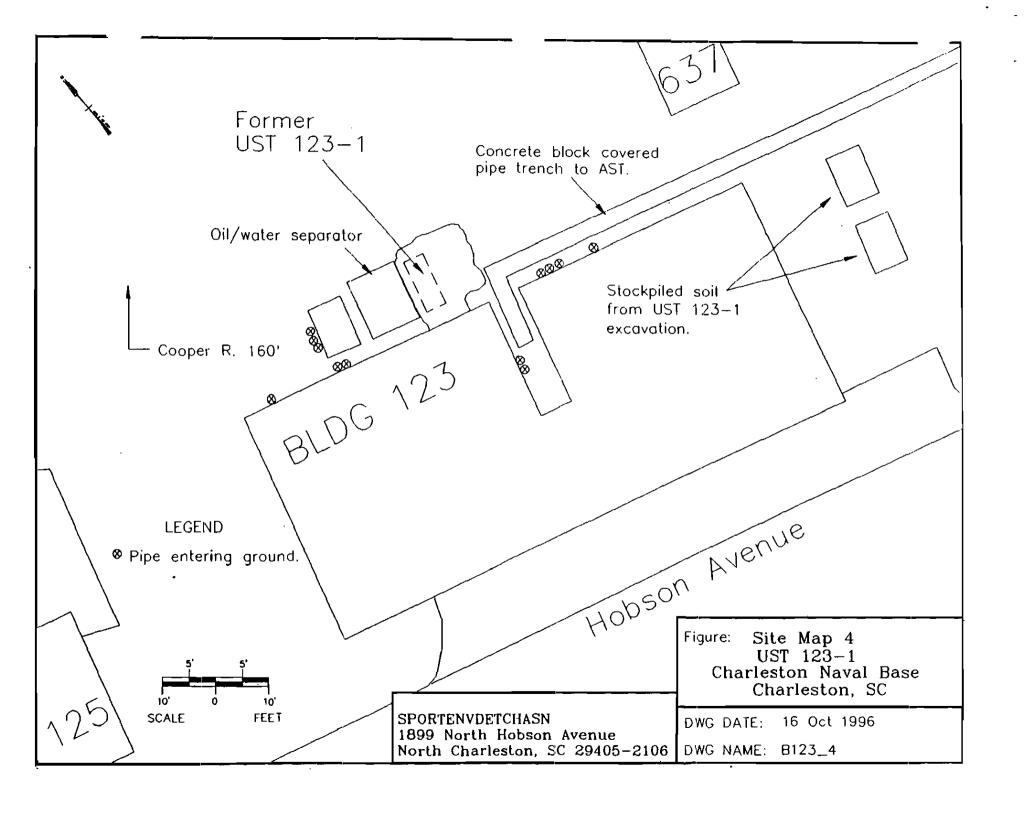
Yes No


A .	Are there any lakes, ponds, streams, or wetlands located within 1000 feet of the UST system? [* Cooper River 160'] If yes, indicate type of receptor, distance, and direction on site map.	X*	
В.	Are there any public, private, or irrigation water supply wells within 1000 feet of the UST system? If yes, indicate type of well, distance, and direction on site map.		x
C.	Are there any underground structures (e.g., basements) located within 100 feet of the UST system? [* oily/water separator, adjacent] If yes, indicate the type of structure, distance, and direction on site map.	X*	
D.	Are there any underground utilities (e.g., telephone, electricity, gas, water, sewer, storm drain) located within 100 feet of the UST system that could potentially come in contact with the contamination? [* sewer] If yes, indicate the type of utility, distance, and direction on the site map.	X*	
E.	Has contaminated soil been identified at a depth of less than 3 feet below land surface in an area that is not capped by asphalt or concrete? If yes, indicate the area of contaminated soil on the site map.	x	


Attachment I


SITE MAP


You must supply a <u>scaled</u> site map. It should include all buildings, road names, utilities, tank and pump island locations, sample locations, extent of excavation, and any other pertinent information.


Site Maps 1, 2, 3, and 4 Photographs 1 and 2

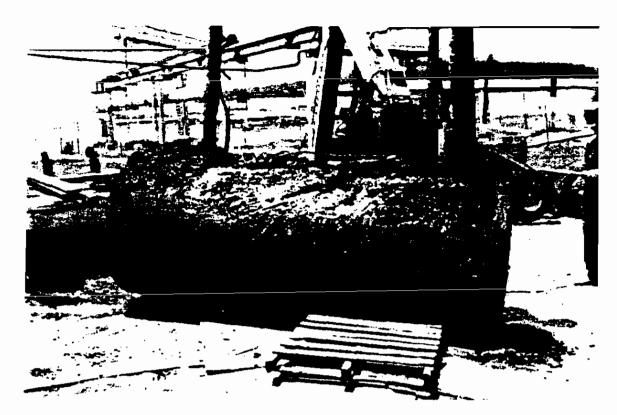


Photo 1: UST 123-1 immediately after removal.

Photo 2: UST 123-1 excavation after removal of the UST. Discolored soil is from backfill of previous pipe repair excavation. Free product film in groundwater has no appreciable depth.

Attachment II

ANALYTICAL RESULTS

You must submit the laboratory report and chain-of-custody form for the samples. These samples must be analyzed by a South Carolina certified laboratory.

Certified Analytical Results Chain-of-Custody

Meeting today's needs with a vision for tomorrow.

CERTIFICATE OF ANALYSIS

Client

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contect:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

c: NPWC00196

Report Date: July 01, 1996

Page 1 of 4

Sample ID Lab ID

: SPORT0082-1 : 9606402-01

Matrix

: Soil : 06/20/96

Date Collected Date Received

: 06/21/96

Priority

: Routine

Collector

: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analy	rat Date	Time	Batch	M
"'rlatile Organics	-										
EX - 4 items											
_enzene	U	0.00	20.0	40,0	ug/kg	20.	JAC	06/24/96	1255	86322	1
Ethylbenzene	U	0.00	20.0	40,0	ng/kg	20.					
Toluene	U	7.40	20.0	40.0	ug/kg	20.					
Xylenes (TOTAL)	Ü	0.00	20.0	40.0	ug/kg	20.					
Naphthalene	Ü	0.00	20.0	40.0	ug/kg	20.					
Extractable Organics											
Polynuciear Aromatic H	lydrocarbo <mark>ns</mark> -	16 items									
Acenaphthene		4240	1660	3310	ug/kg	10.	JCB	06/25/96	2345	86390	2
Acenaphthylene	U	0.00	1660	3310	ng/kg	10.					
Anthracene		5660	1660	3310	ng/kg	10.					
Benzo(a)anthracene	1	2710	1660	3310	ng/kg	10.					
Benzo(a)pyrene	J	1750	1660	3310	ug/kg	10.					
Benzo(b)fluoranthene	J	2090	1660	3310	ug/kg	10.					
Benzo(ghi)perylene	ប	0.00	1660	3310	ug/kg	10.					
Benzo(k)fluoranthene	U	0.00	1660	3310	ug/kg	10.					
Chrysene	ប	0.00	1660	3310	ug/kg	10.					
Dibenzo(a,h)anthracene	υ	0.00	1660	3310	ug/kg	10.					
Fluoranthene		12400	1660	3310	ug/kg	10.					
Fluorene	J	2650	1660	3310	ug/kg	10.					
Indeno(1,2,3-c,d)pyrene	. U	0.00	1660	3310	ug/kg	10.					
Naphthalene	U	0.00	1660	3310	ug/kg	10.					
Phenanthrene		16300	1660	3310	ug/kg	10.					
Рутеле		9570	1660	3310	ug/kg	10.			:		
Metala Analysis			233								
fercury	J	0.152	0.00232	0.200	mg/kg	1.0	RMJ	06/26/96	1309	86352	N
ilver	Ü	8.23	125	500	ug/kg	1.0		06/27/96		86447	
Arsenic	•	15400	93.0	500	ug/kg	1.0	. 11 618			22.00	-

Meeting today's needs with a vision for tomorrow.

CERTIFICATE OF ANALYSIS

Client:

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

œ: NPWC00196

Report Date: July 01, 1996

Page 2 of 4

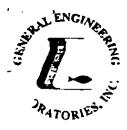
	Sample ID		: SPORT0082-1							
Parameter ()ualifier	Resuit	DL	RL	Units	DF	Analyst Date	Time	Batch	м
Barium		33700	3.32	500	ug/kg	1.0				
Cadmium	J	181	4.85	250		1.0	NRM 06/27/96	2116	86447	3
Chromium		18700	29.8	500	ug/kg	1.0				
Lead		114000	56.5	250	ug/kg	1.0				
Selenium		870	71.5	250	• •	1.0				
General Chemistry										
~al Rec. Petro. Hydroca	rbons	678	10,0	50.0	mg/kg	1.0	JEN 06/26/96	1200	86423	4

The following prep procedures were performed:

GC/MS Base/Neutral Compounds

Mercury

TRACE


GWL 06/25/96 1630 86390 5 RMJ 06/25/96 1500 86352 6 FGD 06/26/96 1500 86447 7

Comments:

A dilution was required for Volatile Organics due to a high concentration of hydrocarbons. A dilution was required for Extractable Organics due to a high concentration of target compounds and matrix interference.

As a result, the detection limits are elevated.

Surrogate Recovery	Test	Percent%	Acceptable Limits	
2-Fluorobiphenyl	M610	0.00*	(30.0 - 115.)	
Nitrobanzene-d5	M610	0.00*	(23.0 - 120.)	
p-Terphenyl-d14	M610	0.00*	(37.3 - 128.)	
Bromofluorobenzene	BTEX-8260	102.	(59.7 - 159.)	
Dibromofluoromethane	BTEX-8260	95.2	(74.0 - 128.)	
Toluene-d8	BTEX-8260	90.8	(53.4 - 163.)	
Bromoflucrobenzene	NAP-8260	102.	(59.7 - 159.)	
Dibromofluoromethane	NAP-8260	95.2	(74.0 - 128.)	
Toluene-d8	NAP-8260	90.8	(53.4 - 163.)	

Meeting today's needs with a vision for tomorrow.

CERTIFICATE OF ANALYSIS

Client:

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

œ: NPWC00196

Report Date: July 01, 1996

Page 3 of 4

: SPORT0082-1

M = Method	Method-Description	
M 1	EPA 8260	
M 2	EPA 8270	
M 3	EPA 6010A	
M 4	EPA 9071	
M 5	EPA 3550	
M 6	EPA 7471	
`47	EPA 3050	

Notes:

The qualifiers in this report are defined as follows:

I indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

^{*} indicate that a quality control analyte recovery is outside of specified acceptance criteria.

GEL Laboratory Certifications		EPI Laboratory Certification	DES .
AL - 41040	AZ - AZ0514	AL - 41050	AZ - AZ0514
CA - 2089	CT - PH-0169	CA - I-1023/2056	CT - PH-0175
DE - SC012	FL - E87156/87294	FL - E87472/87458	MS - 29417
ME - SC012	MS - 10120	NY - 11502	RI - 138
NC - 233	NY - 11501	SC - 10582	TN - 02934
RI - 135	SC - 10120	UT - E-227	VA - 00111
TN - 02934	UT - E-251	WA - C225	NJ - 79002

U indicates that the analyte was not detected at a concentration greater than the detection limit.

Meeting today's needs with a vision for tomorrow.

CERTIFICATE OF ANALYSIS

Client:

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

œ: NPWC00196

Report Date: July 01, 1996

Page 4 of 4

Sample ID

: SPORT0082-1

GEL Laboratory Certifications

EPI Laboratory Certifications

VA - 00151

WA - C223

PA - 68-485

WV - 235

WI - 999887790

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct

ruestions to your Project Manager, Karen Blakeney at (803) 769-7386.

Meeting today's needs with a vision for tomorrow.

CERTIFICATE OF ANALYSIS

Client:

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

a: NPWC00196

Report Date: July 01, 1996

Page 1 of 4

Sample ID

: SPORT0082-2

Lab ID

: 9606402-02

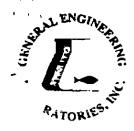
Matrix

: Soil

Date Collected

Date Received

: 06/20/96 : 06/21/96


Priority

: Routine

Collector

: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Anal	yst Date	Time	Batch	M
7/oiatile Organics					-						
EX - 4 items											
.cnzene	บ	0.00	20.0	40.0	ug/kg	20.	JAC	06/24/96	1754	86322	1
Ethylbenzene	บ	0.00	20.0	40.0	ug/kg	20.					
Toluene	บ	0.00	20.0	40.0	ug/kg	20.					
Xylenes (TOTAL)	บ	7.40	20.0	40.0	ug/kg	20.					
Naphthalene		610	20.0	40.0	ug/kg	20.					
Extractable Organics											
Polynuclear Aromatic H	ydrocarbons -	16 items									
Acenephthene	-	7140	1650	3290	ug/kg	10.	JCB	06/26/96	0017	86390	2
Acenaphthylene	บ	0.00	1650	3290	ug/kg	10.					
Anthracene		8820	1650	3290	ug/kg	10.					
Benzo(a)anthracene	J	3190	1650	3290	ug/kg	10.					
Benzo(a)pyrene	บ	0.00	1650	3290	ug/kg	10.					
Benzo(b)fluoranthene	J	2600	1650	3290	ug/kg	10.					
Benzo(ghi)perylene	บ	0.00	1650	3290	ug/kg	10.					
Benzo(k)fluoranthene	ប	0.00	1650	3290	ug/kg	10.					
Chrysene	ប	1650	1650	3290	ug/kg	10.					
Dibenzo(a,h)anthracene	บ	0.00	1650	3290	ug/kg	10.					
Fluoranthene		18300	1650	3290	ug/kg	10.		•			
Fluorene		4670	1650	3290	ug/kg	10.					
Indeno(1,2,3-c,d)pyrene	U	0.00	1650	3290	ug/kg	10.					
Naphthalene	Ü	0.00	1650	3290	ug/kg	10.					
Phenanthrene	-	26700	1650	3290	ug/kg	10.					
Рутеле		16400	1650	3290	ug/kg	10.					
Metals Analysis					-98						
`facury		0.304	0.00226	0.200	mg/kg	1.0	RMJ	96/26/96	1312	86352	N
ilver	U	-14.2	123	500	ug/kg	1.0		06/27/96		86447	•
Arsenic	_	13600	92.1	500	ug/kg	1.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				_

Meeting today's needs with a vision for tomorrow.

CERTIFICATE OF ANALYSIS

Client

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

c NPWC00196

Report Date: July 01, 1996

Page 2 of 4

	Sample III		: SPORT0082-2								
Parameter ()ualifier	Result	DL	RL	Units	DF	Analy	rst Date	Time	Batch	м
Barium		27900	3.28	500	ug/kg	1.0					-
Cadmium	J	81.4	4.80	250	ug/kg	1.0	NRM	06/27/96	2120	86447	3
Chromium		28300	29.5	500	ug/kg	1.0					
Lead		65900	\$5.9	250	ug/kg	1.0					
Selenium		861	70,8	250	ug/kg	1.0					
General Chemistry											
Total Rec. Petro. Hydroca	rbons	445	10.0	50.0	m g/kg	1.0	JEN	06/26/96	1200	86423	4

The following prep procedures were performed:

GC/MS Base/Neutral Compounds

Mercury TRACE GWL 06/25/96 1630 86390 5 RMJ 06/25/96 1500 86352 6

FGD 06/26/96 1500 86447 7

Comments:

A dilution was required for Volatile Organics due to a high concentration of hydrocarbons. A dilution was required for Extractable Organics due to a high concentration of target compounds and matrix interference.

As a result, the detection limits are elevated,

Surrogate Recovery	Test	Percent%	Acceptable Limits	
2-Fluorobiphenyl	M610	0.00*	(30.0 - 115.)	
Nitrobenzene-d5	M610	0.00*	(23.0 - 120.)	
p-Terphenyl-d14	M610	0.00*	(37.3 - 128.)	
Bromofluorobenzene	BTEX-8260	96.8	(59.7 - 159.)	
Dibromofluoromethme	BTEX-8260	3. 26	(74.0 - 128.)	
Toluene-d8	BTEX-8260	96.4	(53.4 - 163.)	
Bromofluorobenzene	NAP-8260	96.8	(59.7 - 159.)	•
Dibromofluoromethane	NAP-8260	95.6	(74.0 - 128.)	
Toluene-d8	NAP-8260	96.4	(53.4 - 163.)	

Meeting today's needs with a vision for tomorrow.

CERTIFICATE OF ANALYSIS

Client

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

c: NPWC00196

Report Date: July 01, 1996

Page 3 of 4

	Sample ID	: SPORT0082-2		
M = Method		Method-Description		
M 1		EPA 8260		
M 2		EPA 8270		
M 3		EPA 6010A	•	
M 4		EPA 9071		•
M 5		EPA 3550		
M 6		EPA 7471		
147		EPA 3050		• •

Notes:

The qualifiers in this report are defined as follows:

indicate that a quality control analyte recovery is outside of specified acceptance criteria.

GEL Laboratory Co	rtifications	EPI Laboratory Certification	DOM.	
AL - 41040	AZ - AZ0514	AL - 41050	AZ - AZ0514	
CA - 2089	CT - PH-0169	CA - I-1023/2056	CT - PH-0175	
DE - SC012	FL - E87156/87294	FL - E87472/87458	MS - 29417	
ME - SC012	MS - 10120	NY - 11502	RI - 138	
NC - 233	NY - 11501	SC - 10582	TN - 02934	
RI - 135	SC - 10120	UT - E-227	VA - 00111	
TN - 02934	UT - E-251	WA - C225	NJ - 79002	

I indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

Meeting today's needs with a vision for tomorrow.

CERTIFICATE OF ANALYSIS

Client:

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00196

Report Date: July 01, 1996

Page 4 of 4

Sample ID

: SPORT0082-2

GEL Laboratory Certifications

EPI Laboratory Certifications

VA - 00151

WA - C223

PA - 68-485

WV - 235

WI - 999887790

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct

questions to your Project Manager, Karen Blakeney at (803) 769-7386.

Jerryen F. Du

Analytical Report Specialist

Meeting today's needs with a vision for tomorrow.

CERTIFICATE OF ANALYSIS

Client:

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

c NPWC00196

Report Date: July 02, 1996

Page 1 of 4

Sample ID

Lab ID

: SPORT0082-3 : 9606402-03

Matrix

: GroundH2O

Date Collected

: 06/20/96

Date Received

: 06/21/96

Priority

: Routine

Collector

: Client

Parameter	Qualifler	Result	DL	RL	Units	DF	Analyst Date	Time	Batch	M
Volatile Organics										
EX - 4 items										
417EDE	บ	0.00	50.0	100	ug/l	50.	THL 06/27/96	1601	86429	1
Ethylbenzene	U	0.00	50.0	100	ug/l	50.				
Toluene	U	0.00	50.0	100	ug/l	50.				
Xylenes (TOTAL)	U	0.00	50.0	100	ug/l	50.				
Naphthalene	U	26.5	50.0	100	ug/l	50.				
Extractable Organics										
Polynuclear Aromatic H	ydrocarbons -	16 items								
Acenaphthene	ับ	0.00	50.0	100	ug/l	10.	BDG 06/25/96	1607	86295	2
Acenaphthylene	U	0.00	50.0	100	ug/l	10.				
Anthracene	U	0.00	50.0	100	ug/l	10.				
Benzo(a)anthracene	Ŭ	0.00	50.0	100	nā/j	10.				
Вепло(в)ругене	U	0.00	50.0	100	ug/l	10.				
Benzo(b)fluoranthene	U	0.00	50.0	100	ug/l	10.				
Benzo(ghi)perylene	U	0.00	50.0	100	ug/l	10.				
Benzo(k)fluoranthene	Ū	0.00	50.0	100	ug/l	10.				
Chrysene	Ü	00.0	50.0	100	ug/l	10.				
Dibenzo(a,h)anthracene	บ	00.0	50.0	100	ug/l	10.				
Fluoranthene	1	51.0	50.0	100	ug/l	10.				
Fluorene	บ	00.0	50.0	100	ug/l	10.				
Indeno(1,2,3-c,d)pyrene	U	0.00	50.0	100	ug/l	10.				
Naphthalene	บ	00.0	50.0	100	ug/l	10.				
Phenonthrene	บ	0.00	50.0	100	ug/l	10.		•		
Рутеле	Ū	0.00	50.0	100	ug/l	10.	•			
Metais Analysis	•	V	242	.30	╼-					
`(acry		9.13	0.0148	0.500	ug/l	1.0	DVW 06/25/96	1117	86350	N
lver	J	3.66	2.49	10.0	ug/l	1.0	NRM 06/28/96		86385	
Amenic	•	416	1.86	10.0	ug/l	1.0				_

Meeting today's needs with a vision for tomorrow.

CERTIFICATE OF ANALYSIS

Client

Supervisor of Ship Building & Conversion.

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

œ: NPWC00196

Report Date: July 02, 1996

Page 2 of 4

	Sample ID	1	: SPORT0082-3							
Parameter Q	uailfler	Result	DL	RL	Units	DF	Analyst Date	Time	Batch	M
Barium		1050	0.0663	10.0	ug/l	1.0	-			
Cadmium		15.4	0.0970	5.00	ug/l	1.0	NRM 06/28/96	0213	86385	3
Chromium		475	0 _19 6	10.0	ug/l	1.0				
Lead		3640	1.13	5,00	ug/l	1.0				
Selenium		11.4	1.43	5.00	ug/l	1.0				
General Chemistry										
Total Rec. Petro. Hydrocar	bons	253	2.00	2.00	mg/l	1.0	JEN 06/24/96	1025	86317	4

The following prep procedures were performed:

GC/MS Base/Neutral Compounds

Mercury

TRACE

TNF 06/24/96 1000 86295 5 RMI 06/24/96 1500 86350 6

FGD 06/26/96 1300 86385 7

Comments:

A dilution was required for Volatile Organics due to a high concentration of hydrocarbons. A dilution was required for Extractable Organics due to matrix interference.

As a result, the detection limits are elevated.

Surrogate Recovery	Test	Percent%	Acceptable Limits	
2-Fluorobiphenyl	M610	0.00*	(43.0 - 108.)	
Nitrobenzene-d5	M610	0.00*	(35.0 - 111.)	
p-Terphenyl-d14	M610	0.00*	(33.0 - 125.)	
Bromofluorobenzene	BTEX-8260	89.2	(80.0 - 128.)	
Dibromofluoromethane	BTEX-8260	122.	(67.7 - 135.)	
Toluene-d8	BTEX-8260	92.2	(76.8 - 122.)	
Bromofluorobenzene	NAP-8260	89.2	(80.0 - 128.)	
Dibromofluoromethane	NAP-8260	122.	(67.7 - 135.)	
Tolvene-d8	NAP-8260	92.2	(76.8 - 122.)	

Meeting today's needs with a vision for tomorrow.

CERTIFICATE OF ANALYSIS

Client

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

c: NPWC00196

Report Date: July 02, 1996

Page 3 of 4

	Sample ID	: SPORT0082-3	
M = Method		Method-Description	
M 1		EPA 8260	
M 2		EPA 8270	
M 3		EPA 6010A	
M 4		EPA 9070A	
M 5		EPA 3510	
M 6		EPA 7470	
147		EPA 3005	, ar
•			

Notes:

The qualifiers in this report are defined as follows:

J indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

^{*} indicate that a quality control analyte recovery is outside of specified acceptance criteria.

GEL Laboratory Co	rtifications	EPI Laboratory Certification	ens.
AL - 41040	AZ - AZ0514	AL - 41050	AZ - AZ0514
CA - 2089	CT - PH-0169	CA - I-1023/2056	CT - PH-0175
DE - \$C012	FL - E87156/87294	FL - E87472/87458	MS - 29417
ME - SC012	MS - 10120	NY - 11502	RI - 138
NC - 233	NY - 11501	SC - 10582	TN - 02934
U - 135	SC - 10120	UT - E-227	VA - 00111
TN - 02934	UT - E-251	WA - C225	NJ - 79002

Meeting today's needs with a vision for tomorrow.

CERTIFICATE OF ANALYSIS

Client:

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

œ: NPWC00196

Report Date: July 02, 1996

Page 4 of 4

Sample ID

: SPORT0082-3

GEL Laboratory Certifications

EPI Laboratory Certifications

VA - 00151

WA - C223

PA - 68-485

WV - 235

WI - 999887790

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct

questions to your Project Manager, Karen Blakeney at (803) 769-7386.

Analytical Report Specialist

CHAIN OF CUSTODY RECORD

General Engineering ries, fuc. 2040 Savage Road . 29414 Charleston, South Car P.O. Box 30712 Charleston, South Carolina 29417 (803) 556-8171

r [7	age of		1406	40	20		_	SAM	17,K.A	NAL.	/SIS I	HOU	RED	k) - a-	e kanai	ks area	hi sire-	ils siss	ilk: cm	i hi ne ik f	l or m	clusts		Charleston, 8 (803) 556-81	171	indicate whether
•	SPORTEN	III. VD <i>ET</i>	CHAS	N.		8	口	Ш			Ī				ÌÏ	ΪÏ				1	 	رها ا	П		as Dietel and	
c	Collected by/Company SPORTER	_				CONTAINERS	pH. conductivity	×	P.H.	. Fluoride.	Historic	pecify	K AT		<u>.</u>	ioaa	rectables	ractables			ı - specify	STEX PUS NAPTIPAPIN	I	CCL	219	957
	SAMPLE ID	DATE		WELL	A. m	1 ~	pH. com	тослос	THH	Calorida	Nitrite	VOC - St	;SY;FIN	Pentichd	Herbicide	Total Phenoi	Acid Exime	BN Extractable	PCB's	Cymulde	Colliforn	STEX NAPI	2		Remar	ks
•	5PORTO082-1	6/20/96	1500	X	X	4			X	_			X							J		X	١,	UST- 12	23-1	-150il
•	S PORTO082 - Z	6/20/96	1500	X	X	4			X	\perp			X									X				-2 <u>50il</u>
<	PORT0082-3	6/20/96	1500		X	8			X	_			X									X	X	<u>UST-12</u>	3-1-	3 GW
5	PORTOO82-4	6/20/96	1500		X	3								·	_							X				Riz BhnK
				Ш										 						-		ļ				
		•																				<u> </u>				
				Ш																	_					
																						ļ				
				Ш		L														r						
				Ш																						
										_									_			ļ				
_							_																			
								L														Date		Time; Roceiv	and have	• 0
	ctinquished by:	Sim	6/21/96	De Contraction	<u>35</u>	Kece	W	, r	2./	<u>и</u>	er		1.	Į.	nuish L	3. %	16	^	6						chal	100-
R	elinquished by:)	HX196	Time		K	<u> 10</u>		"። ⁄ ጎ ር	u	ىر	0		D#e	90	Time	3 0	Atm	árks:	,						

Attachment III

Certificate of Disposal (tank)

UST Certificate of Disposal

CONTRACTOR

Supervisor of Shipbuilding, Conversion and Repair, USN Portsmouth, VA Environmental Detachment Charleston 1899 North Hobson Avenue North Charleston 29405-2106

Telephone (803) 743-6482

TANK ID & LOCATION

UST 123-1; Bldg 123, Naval Base Charleston, N. Charleston, SC

DISPOSAL LOCATION

Bldg. 1601 Tank Cleaning & Disposal Area Charleston Naval Complex

TY	PE	OF	TANK	

SIZE (GAL)

Waste oil

1,000 gal.

CLEANING/DISPOSAL METHOD

The tank was cut open on both ends, cleaned with a steam cleaner, cut into sections, and disposed of as recyclable scrap metal.

DISPOSAL CERTIFICATION

I certify that the above tank has been properly cleaned and disposed of as recyclable scrap metal.

9821them (Name)

Date)

ZONE G 17 July 1998

2600 Bull Street Columbia, SC 29201-1708

COMMISSIONER: Douglas E. Bryant

ROARD-John H. Burriss Chairman

William M. Hull, Jr., MD Vice Chairman

Roger Leaks, Jr. Secretary

Mark B. Kent

Cyndi C. Mosteller

Brien K. Smith

Rodney L. Grandy

Department of the Navy Southern Division NFEC

P.O. Box 190010

North Charleston, SC 29419-9010

Attn: Mr. Gabriel Magwood

Aboveground Storage Tank Assessment Report dated 1 June 1998 Re.

AST 3909 (Site Identification # 010xx) (Zeve () Charleston Naval Complex/Charleston Naval Base

Charleston, SC Charleston County

Dear Mr. Magwood:

The author has completed technical review of the referenced document. As submitted, the report provides a narrative describing closure activities and analytical results of environmental sampling to determine if releases have occurred as a result of operation of the referenced vessel and/or associated piping system. The analytical results provided indicate reportable concentrations of PAH compounds were detected in soil grab samples obtained proximal to the AST foundation. The reported concentrations are below levels proposed in the SCAP (Soil Corrective Action Plan, amended July 1997). It should be noted that although sample results for SPORT 0616-2 were reported as BDI. (helow detection limits) the detection limit for this sample was elevated due to matrix interference. As noted in previous correspondence (Bristol to Amey, 2 September 1997), when contaminant concentrations are reported as zero (0) or BDL it will be assumed that the chemical constituent is equal to the elevated netection limit. With this consideration, the reported concentrations approach or exceed levels proposed in the SCAP (Soil Corrective Action Plan amended July 1997) for the Charleston Naval Complex and appear to indicate that additional endeavors for remedial actions and contaminant characterization are warranted at the referenced site. In this regard, assessment/corrective action activities proposed in the Tank Management Plan (dated October 1996) should be implemented in an appropriate and timely manner. Employed activities should be technically sufficient and reasonable to determine the extent and severity of suspected contamination. Please be reminded that groundwater sampling. if necessary, will require construction of sampling points and will need to be submitted for prior review and approval, as appropriate.

Further, appropriate consideration to the destruction and removal of the concrete piping trench should be incorporated with the above requested work.

Charleston Naval Complex/Charleston Naval Base 17 July 1998 page 2

Should you have any questions please contact me at (803) 734-5328.

Sigcerely,

Paul L. Bristol, Hydrogeologist Groundwater Quality Section

Bureau of Water

cc: Trident District EQC

21 July 1998

600 Bull Street Johnnbia, SC 29201-1708

OMMISSIONER:

lougles E. Bryant

IQARD: obs H. Bustiss

Thairman

William M. Hull k., MD /ice Chairman

Cyndi C. Mosteller

Roger Leaks, Jr. RCTELETY

Wark B. Kont

Brian K. Sznith

Rodney L. Grandy

Re: SCDHEC Correspondence dated 17 July 1998

AST:3909 (Site Identification #01093)

Charleston Naval Complex/Charleston Naval Base

Charleston, SC Charleston County

North Charleston, SC 29419-9010

Attn: Mr. Gabriel Magwood

Department of the Navy Southern Division NFEC

P.O. Box 190010

Dear Mr. Magwood:

Please note that the Site Identification number assigned this site had been inadvertently omitted from the referenced document. The AST 3909 project will be tracked under Site Identification # 01093. The author apologizes for any inconvenience this omission may have caused.

Should you have any questions please contact me at (803) 734-5328.

Sincerely

Paul L. Bristol/Hydrogeologist Groundwater Quality Section

Bureau of Water

CC:

Trident District EQC

,
-,
wells
montaring
20
data
Any
1

Henry Shepard II, P. E.

Name (Type or Print)

Signature

oder 8690 TRPH Date Received Sta	Aboveground Storage Tank (AST)	Submit Completed Form to: SCDHEC 2600 Bull Street Columbia, South Carolina 29201 Telephone (803) 734-5331
OWNERSHI	P OF AST(S)	
Agency/Owner: So	outhern Division, Naval Facilities En	gineering Command, Caretaker Site
Mailing Address:	P.O. Box 190010	
City: N. Charlest	on State: SC	Zip Code: 29419-9010
Area Code: 843	Celephone Number: 743-9985 Conta	act Person: Henry N. Shepard II, F
		act Person: Henry N. Shepard II, F
. SITE IDENT	IFICATION AND LOCATION	act Person: Henry N. Shepard II, F
Site I.D. #:	Unregulated	
SITE IDENT Site I.D. #: Facility Name:	Unregulated Charleston Naval Base Complex	
SITE IDENT Site I.D. #: Facility Name: Street Address:	Unregulated Charleston Naval Base Complex Dyess Avenue	x, AST 3909
SITE IDENT Site I.D. #: Facility Name:	Unregulated Charleston Naval Base Complex	
SITE IDENT Site I.D. #: Facility Name: Street Address: City:	Unregulated Charleston Naval Base Complex Dyess Avenue	x, AST 3909
SITE IDENT Site I.D. #: Facility Name: Street Address: City:	Unregulated Charleston Naval Base Complex Dyess Avenue North Charleston, 29405-2413	x, AST 3909
SITE IDENT Site I.D. #: Facility Name: Street Address: City: I. CLOSURE II	Unregulated Charleston Naval Base Complex Dyess Avenue North Charleston, 29405-2413	c, AST 3909 County: Charleston

hepaul II P.E. 5/27/98

V. **AST INFORMATION** 3909 Tank 5 Tank 2 | Tank 3 | Tank 4 Fuel oil Product..... A. 200.000 gal. B. Capacity..... 1964 Age..... С. Steel D. Construction Material.... Unk. F., Month/Year of Last Use..... N F. Spill Prevention Equipment Y/N...... Ν G. Overfill Prevention Equipment Y/N.... H. R Method of Closure Removed/Filled... Ī. Visible Corrosion or Pitting Y/N...... Y J. Visible Holes Y/N..... Ν

L. Method of disposal for any ASTs removed.

AST 3909 was cleaned with a steam cleaner, cut into sections, and recycled as scrap metal. (See Attachment III.)

M. Method of disposal for any liquid petroleum, sludges, or waste waters removed from the ASTs.

All residual fuel oil, waste water, and sludge that could be pumped were recycled.

All sludge that was too thick to be pumped was characterized and found to be non-hazardous. This was disposed of as non-regulated sludge waste. (See Attachment III.)

N. If any corrosion, pitting, or holes were observed, describe the location and extent for each AST.

AST 3909 was in good condition. Only minor patches of corrosion were present. No pitting or holes were found.

VI. PIPING INFORMATION

	3909	Tank 2	Tank 3	Tank 4	Tank :	Tank 6
Construction Material	Steel				_	
Distance from AST to Dispenser	160'					
Number of Dispensers	l see history		_			
Type of System P/S	s					
Was Piping Removed Y/N	Y					
Visible Corrosion or Pitting Y/N	Y					
Visible Holes Y/N	N		:			
Age	1964					· —
	Distance from AST to Dispenser Number of Dispensers Type of System P/S Was Piping Removed Y/N Visible Corrosion or Pitting Y/N Visible Holes Y/N	Construction Material				

I. If any corrosion, pitting, or holes were observed, describe the location and extent for each line.

The steel supply and return piping for AST 3909 was protected by a 10" steel conduit which ran through a concrete pipe trench with removable covers.

The piping was corroded throughout its length, but severely corroded where it entered Building 123, where it was unprotected and covered with an oily film. Oily sludge was found inside the steel conduit (see photos), but its source was not determined.

VII. BRIEF SITE DESCRIPTION AND HISTORY

AST 3909 was constructed on site in 1964 to supply fuel oil to the boilers of auxiliary boiler house Building 123. The tank sat on a concrete foundation filled with approximately 18" of sand. The sand served as a soft pad for the tank bottom. Some sand pads on other tanks were found to be oil impregnated. Samples SPORT 0590-1 & 2 and SPORT 0599-2 & 3 were taken to determine if AST 3909's sand pad was oil impregnated and if it had to be disposed of as petroleum contaminated waste. Although the total petroleum hydrocarbon results were elevated, it appears that the sand was not impregnated and a release did not occur; therefore, the sand was left in place.

VIII. SITE CONDITIONS

Yes No Unk

Α.	Were any petroleum-stained or contaminated soils found near the AST?		x	
В.	Were any petroleum odors detected?	х		
	If yes, indicate location on site map and describe the odor (strong, mile etc.)	i,		

IX. SAMPLE INFORMATION

S.C.D.H.E.C. Lab Certification Number 10120

Sample #	Location	Sample Type (Soil/Water)	Depth*	Date/Time of Collection	Collected By	OVA#
SPORT 0590-1	AST foundation	Soil	18"	21 Jan 98 0845	W. Nesbit	8.1 ppm
SPORT 0590-2	AST foundation	Soil	18"	21 Jan 98 0930	W. Nesbit	7.8 ppm
SPORT 0599-2 & 0612-1	Pipe trench See Note 1.	Soil	2'	11 Feb 98 0940	W. Nesbit	Not Taken
SPORT 0599-3	AST foundation	Soil	18"	11 Feb 98 1005	W. Nesbit	Not Taken
SPORT 0599-4	AST foundation	Soil	18"	11 Feb 98 1025	W. Nesbit	Not Taken
SPORT 0616-2	Adjacent to tank.	Soil	2'	9 Mar 98 0950	W. Nesbit	0 ppm
SPORT 0616-3	Adjacent to tank.	Soil	2'	9 Mar 98 1025	W. Nesbit	0 ррт
SPORT 0616-4	Adjacent to tank.	Soil	2'	9 Mar 98 1059	W. Nesbit	0 ppm

Note 1: SPORT 0612-1 is a TCLIP metals test that was added to SPORT 0599-2.

X. SAMPLING METHODOLOGY

Provide a detailed description of the methods used to collect <u>and</u> store (preserve) the samples.

After the removal of AST 3909 and its associated piping, soil samples were taken. Sampling was performed in accordance with SC DHEC R.61-92 Part 280 and SC DHEC UST Assessment Guidelines.

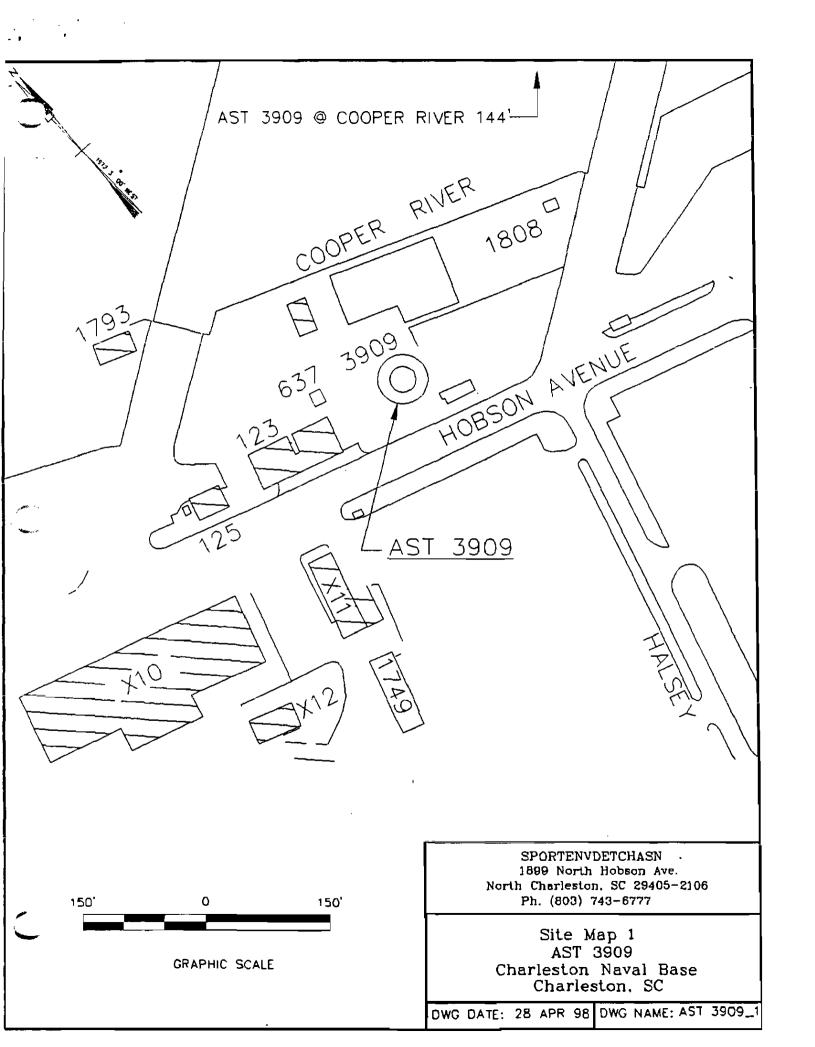
Sample jars were prepared by the testing laboratory. The grab method was utilized to fill the sample containers leaving as little head space as possible and immediately capped. Samples were taken at strategic locations to characterize the site.

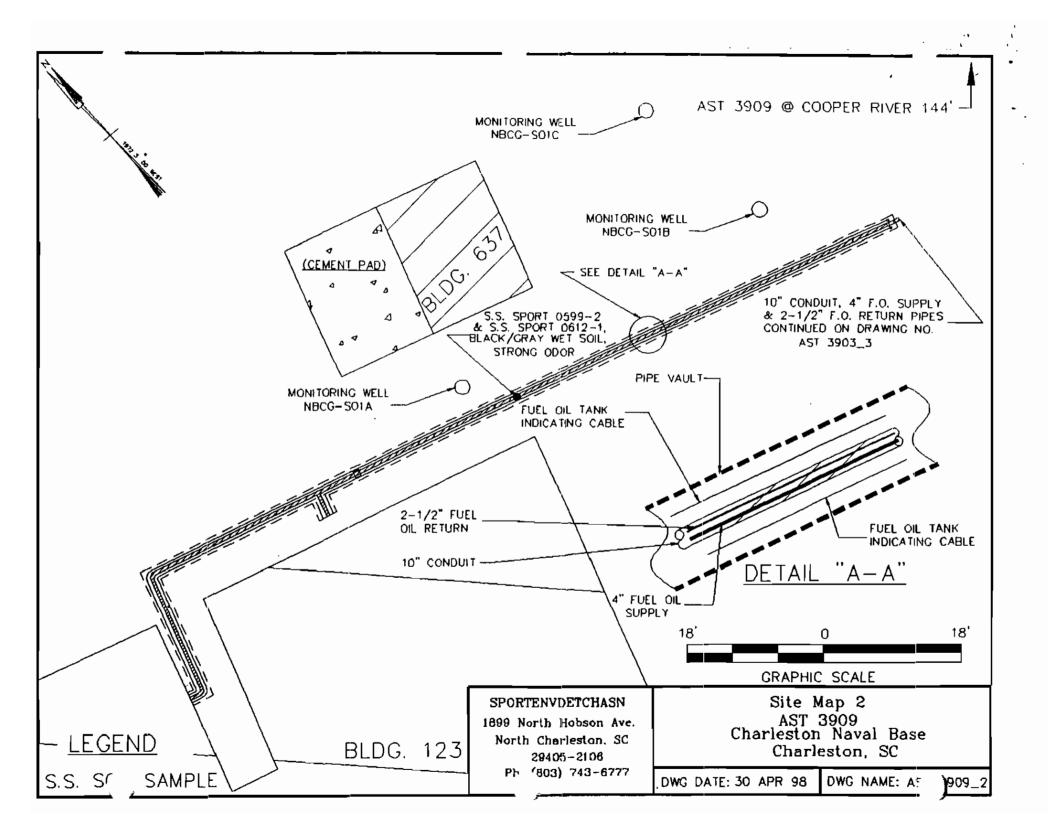
The samples were marked, logged, and immediately placed in sample coolers packed with ice to maintain an approximate temperature of 4° C. Tools were thoroughly cleaned and decontaminated with organic-free soap and water after each sample.

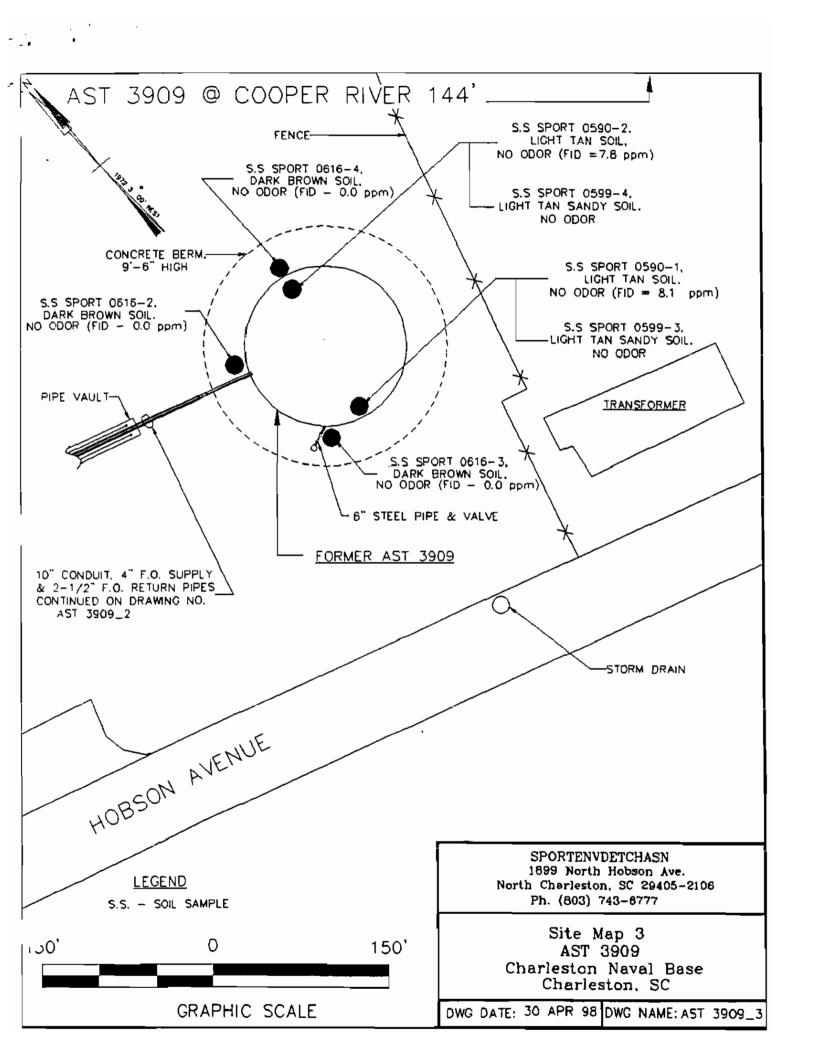
The samples remained in the custody of SPORTENVDETCHASN until they were transferred to General Engineering Laboratories for analysis as documented in the attached Chain-of-Custody Record.

XI. RECEPTORS

Yes No


A.	Are there any lakes, ponds, streams, or wetlands located within 1000 feet of the AST system? [Cooper R. ~ 144'] If yes, indicate type of receptor, distance, and direction on site map.	х	
В.	Are there any public, private, or irrigation water supply wells within 1000 feet of the AST system? If yes, indicate type of well, distance, and direction on site map.		х
i	if yes, indicate type of well, distance, and direction on site map.		
C.	Are there any underground structures (e.g., basements) located within 100 feet of the AST system?		x
	If yes, indicate the type of structure, distance, and direction on site map.		
D.	Are there any underground utilities (e.g., telephone, electricity, gas, water, sewer, storm drain) located within 100 feet of the AST system that could potentially come in contact with the contamination? If yes, indicate the type of utility, distance, and direction on the site map. [storm drain]	x	


Attachment I


SITE MAP

You must supply a <u>scaled</u> site map. It should include all buildings, road names, utilities, tank and pump island locations, sample locations, extent of excavation, and any other pertinent information.

Site Maps 1, 2, and 3 Photographs 1 - 6

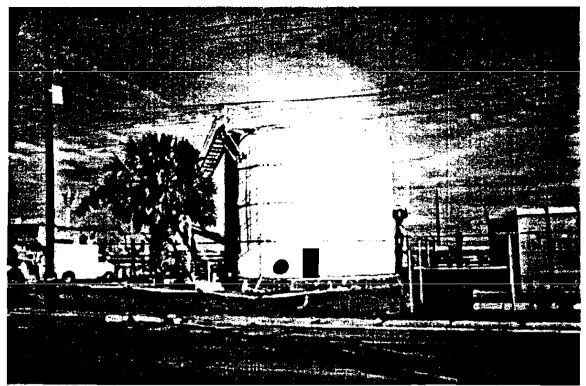


Photo 1: AST 3909 in the early stages of disassembly. Grid work is where the lead base paint was removed prior to cutting.

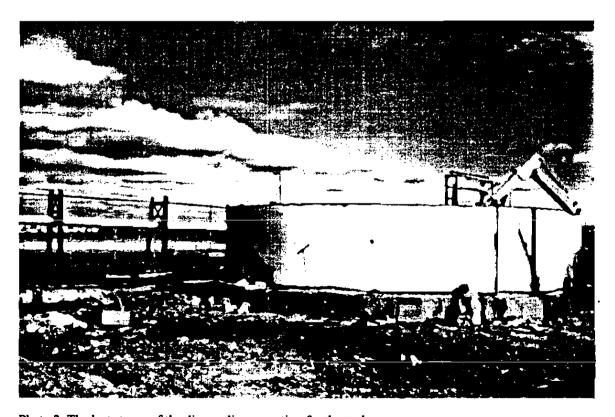


Photo 2: The last stages of the dismantling operation for the tank.

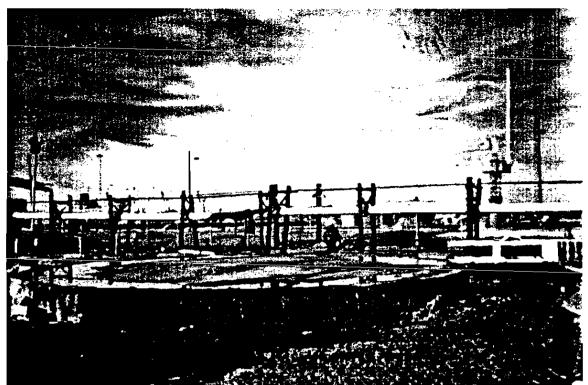



Photo 3: AST 3909 foundation.

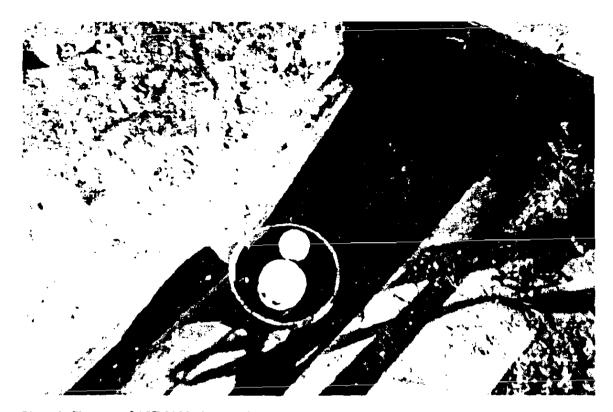


Photo 5: Close-up of AST 3909 pipe trench arrangement.

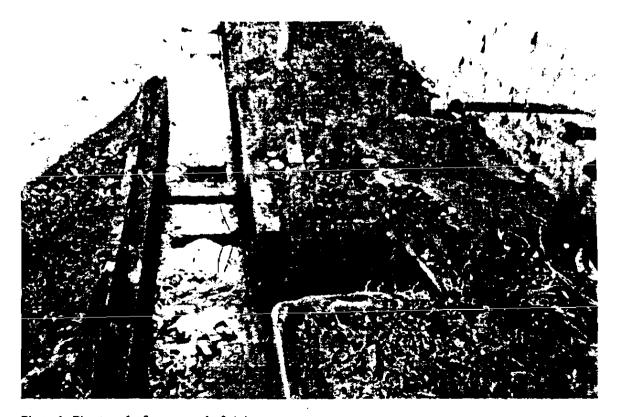


Photo 6: Pipe trench after removal of piping.

Attachment II

ANALYTICAL RESULTS

You must submit the laboratory report and chain-of-custody form for the samples. These samples must be analyzed by a South Carolina certified laboratory.

Certified Analytical Results Chain-of-Custody

Meeting today's needs with a vision for tomorrow.

Laboratory Certifications

STATE GEL FLOCK E87156/67294 E37472/87-233 10120 10582 02934 02934

Client

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: February 03, 1998

Page 1 of 2

Sample ID Lab ID

: SPORT0590-1

Matrix

: 9801495-01

Date Collected

: Soil

: 01/21/98

Date Received

: 01/21/98

Priority Col

: Routine : Client

ollector		

Parameter	Qualifier	Result	DL	RL	Units	DF	Апа	st Date	Time	Batch	M
Volatile Organics											_
BTEX - 4 items											
Benzene	U	0.00	1.00	2.00	ug/kg	1.0	TCL	01/25/98	0308	115192	2 .
Ethylbenzene	U	0.00	1.00	2.00	ug/kg	1.0					
Toluene	U	0.310	1.00	2.00	ug/kg	1.0					
Xylenes (TOTAL)	U	0.00	1.00	4.00	ug/kg	1.0					
Naphthalene	U	0.00	1.00	2.00	ug/kg	1.0					
General Chemistry					V · · · ·						
Total Rec. Petro. Hyd	rocarbons	262	10.0	50.0	mg/kg	1.0	ЛЪ	01/27/98	1300	115404	2

Surrogate Recovery	Test	Percent%	Acceptable Limits	
Bromofluorobenzene	BTEX-8260	97.5	(53.5 - 154.)	
Dibromofluoromethane	BTEX-8260	74.0	(63.4 - 136.)	
Toluene-d8	BTEX-8260	107.	(72.1 - 137.)	
Bromotluorobenzene	NAP-8260	97.5	(53.5 - 154.)	
Dibromofluoromethane	NAP-8260	74.0	(63.4 - 136.)	
Toluene-d8	NAP-8260	107.	(72.1 - 137.)	

M = Method	Method-Description
MI	EPA 8260
M 2	EPA 9071 A

Meeting today's needs with a vision for tomorrow.

Laboratory Certifications

 STATE
 GEL
 EPI

 FL
 E87156/87294
 E87472/874

 NC
 233
 E87472/874

 SC
 10120
 10582

 TN
 02934
 02934

Client:

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

c: NPWC00197

Report Date: February 03, 1998

Page 2 of 2

Sample ID

: SPORT0590-1

M = Method

Method-Description

Notes:

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

J indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct any questions to your Project Manager, Karen Blakeney at (803) 769-7386.

Reviewed By

Meeting today's needs with a vision for tomorrow.

Laboratory Certifications

STATE GEL. FL E871: NC 233 SC 10120 TN 02934 EPI E87472/1 E87156/87294 10582 10120

02934

Client

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

c: NPWC00197

Report Date: February 03, 1998

Page 1 of 2

02934

Sample ID Lab ID

: SPORT0590-2

Matrix

: 9801495-02

Date Collected

: Soil : 01/21/98

Date Received

: 01/21/98

Priority

: Routine

Collector

: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Anai	st Date	Time	Batch	M
Volatile Organics											
BTEX - 4 items											
Benzene	U	0.00	1.00	2,00	ug/kg	1.0	TCL	01/25/98	0335	11519	2
Euhylbenzene	U	0.00	1.00	2.00	ug/kg	1.0					
Toluene	U	0.00	1.00	2.00	ug/kg	1.0					
Xylenes (TOTAL)	U	0.00	1.00	4.00	• •	1.0					
Naphthalene	U	0.680	1.00	2.00		1.0					
General Chemistry					-0-0						
Total Rec. Petro. Hydr	rocarbons	183	10.0	50.0	mg/kg	1.0	ПЪР	01/27/98	1300	11540	4 2

Comments:

The surrogate recovery for Dibromofluoromethane is outside of the acceptable limits range due to matrix interference.

Surrogate Recovery	Test	Percent %	Acceptable Limits	
Bromofluorobenzene	BTEX-8260	101.	(53.5 - 154.)	
Dibromofluoromethane	BTEX-8260	20.0*	(63.4 - 136.)	•
Toluene-d8	BTEX-8260	111.	(72.1 - 137.)	
Bromofluorobenzene	NAP-8260	101.	(53.5 - 154.)	
Dibromofluoromethane	NAP-8260	20.0*	(63.4 - 136.)	
Toluene-d8	NAP-8260	111.	(72.1 - 137.)	

M = Method Method-Description

M 1

EPA 8260

P O Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29414

Meeting today's needs with a vision for tomorrow.

Laboratory Certifications

STATE GEL ΕPΙ 128.24 148.64 E17472/8. E87156/87294 211 10120 10582

02934

Client

Supervisor of Ship Building & Conversion SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: February 03, 1998

Page 2 of 2

07914

Sample ID

: SPORT0590-2

M = Method

Method-Description

M 2

EPA 9071A

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

I indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

adicates that the analyte was not detected at a concentration greater than the detection limit.

idicates that a quality control analyte recovery is outside of specified acceptance criteria.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct any questions to your Project Manager, Karen Blakeney at (803) 769-7386.

ren Blakeney

Meeting today's needs with a vision for tomorrow.

Laboratory Certifications

 STATE
 GEL
 EPI

 FL
 E87156/87294
 E87472/8

 NC
 233
 SC
 10120
 10582

 TN
 02934
 02934

Client:

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

c: NPWC00197

Report Date: February 03, 1998

Page 1 of 2

Sample ID

Lab ID

: SPORT0590-3 : 9801495-03

Matrix

: Soil

Date Collected

: 01/21/98

Date Received

: 01/21/98

Priority

: Routine

Collector

: Client

Parameter	Quailfler	Result	DL	RL	Units	DF	Analyst Date	Time	Batch M
Volatile Organics BTEX - 4 items									
Benzene	Ū	0.00	1.00	2.00	ug/kg	1.0	TCL 01/25/98	0403	115192
Ethylbenzene	U	0.00	1.00	2.00	ug/kg	1.0			
Toluene	U	0.00	1.00	2.00	ug/kg	1.0			
Xylenes (TOTAL)	U	0.00	1.00	4.00	ug/kg	1.0			
Naphthalene	Ū	0.00	1.00	2.00	ug/kg	1.0			

Surrogate Recovery	Test	Percent %	Acceptable Limits
Bromotluorobenzene	BTEX-8260	102.	(53.5 - 154.)
Dibromofluoromethane	BTEX-8260	73.0	(63.4 - 136.)
Toluene-d8	BTEX-8260	110.	(72.1 - 137.)
Bromofluorobenzene	NAP-8260	102.	(53.5 - 154.)
Dibromofluoromethane	NAP-8260	73.0	(63.4 - 136.)
Toluene-d8	NAP-8260	110.	(72.1 - 137.)

M = Method-Description

M 1

EPA 8260

***98**01495-03*

Meeting today's needs with a vision for tomorrow.

Laboratory Certifications

 STATE
 GEL
 EPI

 FL
 E87156/87294
 E87472/87

 NC
 233
 SC
 10120
 10582

 TN
 02934
 02934

Client:

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

c: NPWC00197

Report Date: February 03, 1998

Page 2 of 2

Sample ID

: SPORT0590-3

M = Method

Method-Description

Notes:

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

I indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct any questions to your Project Manager, Karen Blakeney at (803) 769-7386.

Paviawad By

P O Box 30712 • Charleston. SC 29417 • 2040 Savage Road • 29414

(803) 556-8171 • Fax (803) 766-1178

+9801495-03+

indicates that a quality control analyte recovery is outside of specified acceptance criteria.

General Engineering L. ries, Inc.

2(Ht) Savage Road Charleston, South Carolina 29407 P.O. Box 30712

Charleston, South Carolina 29417 (803) 556-8171

CHAIN OF CUSTODY RECORD

SPORTENVDET CHASN SOMPLEID DATE TIME 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Relinquished by:	As Am Jack	11me:	_ 4	ived by I	ao ay:∵ ∝∕`	Y.	2.//	h	0	Dale:	16	2 <i>1 C</i>	-) Kema	113;						-		
SAMPLE ID DATE TIME 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Relinguished by:	Dute: 1-21-98	Time: 3/115	Becc	ired by:	m	W	In	u.	Ð	Relia	ulshe	la,	m'	W.	In	ell	2	Date 2	16	Time: 14:50	Atephar	io B	celb
SAMPLE ID DATE TIME 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	·		++++									·							-					
SAMPLE ID DATE TIME 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			╂═┼═┼╌┼	-			-									7					-			
SAMPLEID DATE TIME HAS V 2 SAMPLEID WAS	•		- - -	-		_ -	-																	
SAMPLE ID DATE TIME 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2			╁╂╂╂				_							 		_	-				-			,
SAMPLE ID DATE TIME 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			H	 - -		+									-									
SPORTENVOET CHASN SOCIECTED DATE TIME NO OF A PARTICULAR SOCIECTED DATE OF				1-		-																		
SPORTENVOET CHASN SOCIECTED DATE TIME NO OF A PARTICULAR SOCIECTED DATE OF			╁╂┼┼	-												_	\neg							
SAMPLE ID DATE TIME NO DO TO THE PROPERTY OF T	-		1-1-1-1	-	-	_		- :: <u>-</u> -								_						. ••		
SAMPLE ID DATE TIME NO DO DO DE TOTAL DE CONTANTE DE C			 - - - 		-	_	- - -				- -	_	- -					_						
SPORTENVOET CHASN SPORTENVOET CHASN SAMPLE ID DATE TIME AND OF 10 PARTY STREET BOOK SAMPLE ID DATE TIME AND OF 10 PARTY SAMPLE ID DATE TIM	PORTO 548-1	1-71-78 0 800	 - - - 		-							-				-				^	13.6	NE NE	1.5	
SPORTENVDET CHASN Collected by/Company SPORTENVDETCHASN SAMPLE ID DATE TIME SOCOOL 1-21-9/ 0845 A SOCOOL 1-21-9/ 0845 SOCOOL 1-21-9				1											-				^	x	AST	3909	-3	50,1
SOURTENVOET CHASN SOURTENVOET TOTAL		í I	$I \mid I \mid I$				<u> </u>																	
SYOKTEN V DET CHASV				<i>-</i>		+	108	-	72	-		<u></u>	-		-								7	
SYOKTEN V DET CHASN				OF CO	7. csed	3 ×	bleride uffide	itarte/N	VOC - S	(ETAL	i i		3	dd Err	SN Extr	É	, Tank		5	ITE			riks	
SPORTENVDET CHASN STATEMENT OF	, , , ,	DETCHASN		MIA	lectivic i	١	Pluori	3	percify require				100	ractab	ACLES DA			Date:	Ŧ	N/X	205	P		
	SPORTENVI	DET CHASN	· 	YERS	-		13		-4-			-		+			-	츳		4	* '	ample was filtered un	ifar preserved	

Pink = with report

White = s

'e collector

Yellow = file

Meeting today's needs with a vision for tomorrow,

Laboratory Certifications

EPI E87472/874: STATE GEL FL NC SC TN E87156/87294 233 10582

10120 02934

Client:

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: March 02, 1998

Page 1 of 2

02934

Sample ID

: SPORT0599-1

Lab ID Matrix

: 9802336-01 : Soil

Date Collected

: 02/11/98

Date Received

: 02/11/98

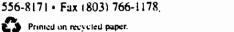
Priority

: Routine

Collector

: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst Date	Time	Batch	M
Volatile Organics										
BTEX - 4 items										
zene	U	0.00	1.00	2.00	ug/kg	1.0	RMB 02/20/98	1546	116917	1
_siylbenzene	ប	0.00	1.00		ug/kg	1.0				
Toluene	ប	0.222	1.00	2.00	ug/kg	1.0				
Xylenes (TOTAL)	U	0.433	1.00	4.00	ug/kg	1.0				
Naphthalene	U	0.00	1,00	2.00	ug/kg	1.0				


Surrogate Recovery	Test	Percent%	Acceptable Limits	
Bromoiluorobenzene	BTEX-8260	115.	(53.5 - 154.)	<u> </u>
Dibromofluoromethane	BTEX-8260	85.6	(63.4 - 136.)	
Toluene-d8	BTEX-8260	114.	(72.1 - 137.)	·
Bromofluorobenzene	NAP-8260	115.	(53.5 - 154.)	
Dibromofluoromethane	NAP-8260	85.6	(63.4 - 136.)	
Toluene-d8	NAP-8260	114.	(72.1 - 137.)	

M = Method	Method-Description

M 1

EPA 8260

9802336-01

Meeting today's needs with a vision for tomorrow.

Laboratory Certifications

STATE FL	GEL E87156/87294	EP1 E87472/874
NC	233	
SC	10120	10582
T.N	02934	02934

Client

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: March 02, 1998

Page 2 of 2

Sample ID

: SPORT0599-1

M = Method

Method-Description

Notes:

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

J indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

• indicates that a quality control analyte recovery is outside of specified acceptance criteria.

1...s data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct any questions to your Project Manager, Karen Blakeney at (803) 769-7386.

Reviewed By

Meeting today's needs with a vision for tomorrow.

Laboratory Certifications

STATE GEL E87472/874 E87156/87294 FL NC SC TN 233

10120 02934

10582 02934

Client

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: February 19, 1998

Page 1 of 2

Sample ID

: SPORT0599-2

Lab ID

: 9802336-02

Matrix

: Soil

Date Collected

: 02/11/98

Date Received

: 02/11/98

Priority Collector : Routine : Client

Parameter Q	ualifler	Resuit	DL	RL	Units	DF	Analy	st Date	Time	Batch M
Metals Analysis					_					
* 4 reury		0.189	0.0151	0.0333	mg/kg	1.0	CRB	02/16/98	1927	116666 N
ET		861	61.4	495	ug/kg	2.0	MBL	02/14/98	0910	11 6609 1
Arsenic		5460	295	495	ug/kg	2.0				
Barium		67600	32.9	495	ug/kg	2.0				
Beryllium	J	245	22.1	495	ug/kg	2.0				
Cadmium		2460	20.6	495	ug/kg	2.0				
Chromium		31300	72.2	495	ug/kg	2.0				
Nickel		193000	225	495	ug/kg	2.0				
Lead		127000	67.1	495	ug/kg	2.0				
Antimony		1400	162	990	ug/kg	2.0				
Selenium		872	138	495	ug/kg	2.0				
General Chemistry										
Total Rec. Petro. Hydrocar	bons	8690	10.0	50.0	mg/kg	1.0	JLP	02/17/98	1315	116726 2
Extractable Organic Halide		-7.58	3.93		mg/kg	1.0		02/18/98		116834 3

The following prep procedures were performed:

Метсигу

CRB 02/14/98 1600 116666 4

TRACE

FGD 02/13/98 1500 116609 5

M = Method	Method-Description	
M 1	EPA 6010A	
M 2	EPA 9071A	
M 3	GEL	
M 4	EPA 7471	
	EPA 3050	

Printed on recycled paper.

Meeting today's needs with a vision for tomorrow.

Laboratory Certifications

STATE GEL E87156/87294 E87472/87-10120 10582 02934

Client:

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: February 19, 1998

Page 2 of 2

Sample ID

M = Method

Method-Description

: SPORT0599-2

Notes:

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

I indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct

any questions to your Project Manager, Karen Blakeney at (803) 769-7386.

un Blakener

indicates that a quality control analyte recovery is outside of specified acceptance criteria.

Meeting today's needs with a vision for tomorrow

Laboratory Certifications

STATE GEL EPI E87472/8745 E87156/87294 233

10120

10582 02934

Client

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: March 02, 1998

Page 1 of 2

Sample ID

: SPORT0599-3

Lab ID Matrix

: 9802336-03

Date Collected

: Soil : 02/11/98

Date Received

: 02/11/98

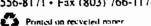
Priority

: Routine

Collector

: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analyst	Date	Time	Batch	М
Extractable Organics											
'vnuclear Aromatic H	ydrocarbons -	16 items									
naphthene	U	0.00	166	331	ug/kg	1.0	JCB 0	2/20/98	0935	11641	9 1
acenaphthylene	U	0.00	166	331	ug/kg	1.0					
Anthracene	U	0.00	166	331	ug/kg	1.0					
Benzo(a)anthracene	U	0.00	166	331	ug/kg	1.0					
Benzo(a)pyrene	U	0.00	166	331	ug/kg	1.0					
Benzo(b)fluoranthene	U	0.00	166	331	ug/kg	1.0					
Benzo(ghi)perylene	U	0.00	166	331	ug/kg	1.0					
Benzo(k)fluoranthene	U	0.00	166	331	ug/kg	1.0					
Chrysene	U	0.00	166	331	ug/kg	1.0					
Dibenzo(a.h)anthracene	U	0.00	166	331	ug/kg	1.0					
Fluoranthene	U	0.00	166	331	ug/kg	1.0					
Fluorene	U	0.00	166	331	ug/kg	1.0					
Indeno(1,2,3-c,d)pyrene	. U	0.00	166	331	ug/kg	1.0					
Naphthalene	U	0.00	166	331	ug/kg	1.0					
Phenanthrene	U	0.00	166	331	ug/kg	1.0					
Рутеле	U	0.00	166	331	ug/kg	1.0					


The following prep procedures were performed:

GC/MS Base/Neutral Compounds

RDH 02/12/98 1430 116419 2

Surrogate Recovery	Test	Percent%	Acceptable Limits
2-Fluorobiphenyl	M610	84.8	(30.0 - 115.)
"nbenzene-d5	M610	83.1	(23.0 - 120.)
rphenyl-d14	M610	90.5	(37.3 - 128.)

P O Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29414

Meeting today's needs with a vision for tomorrow

Laboratory Certifications

STATE GEL E87156/87294 E87472/K 10582 10120 02934

Client:

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: March 02, 1998

Page 2 of 2

Sample ID

: SPORT0599-3

Surrogate Recovery

Test

Percent%

Acceptable Limits

M = Method	Method-Description
M 1	EPA 8270
M 2	EPA 3550

Notes:

he qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit

J indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct any questions to your Project Manager, Karen Blakeney at (803) 769-7386.

indicates that a quality control analyte recovery is outside of specified acceptance criteria.

Meeting today's needs with a vision for comorrow

Laboratory Certifications

STATE GEL FL E87156/87294 FL NC SC TN

EP1 E87472/874

233 10120 02934

10582 02934

Client

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: March 02, 1998

Page 1 of 2

Sample ID

: 5PORT0599-4

Lab ID

: 9802336-04

Matrix

: Soil

Date Collected

: 02/11/98

Date Received

: 02/11/98

Priority Collector : Routine : Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analys	t Date	Тіше	Batch	М
Extractable Organics											
Polynuclear Aromatic H	ydrocarbons -	16 items									
maphthene	υ	0.00	1 65	330	ug/kg	1.0	JCB (02/20/98	1008	116419	1
Acenaphthylene	υ	0.00	165	330	ug/kg	1.0					
Anthracene	υ	0.00	165	330	ug/kg	1.0					
Benzo(a)anthracene	υ	0.00	165	330	ug/kg	1.0					
Benzorajpyrene	υ	0.00	1 65	330	ug/kg	1.0					
Benzoi b)fluoranthene	υ	0.00	165	330	ug/kg	1.0					
Benzo(ghi)perylene	υ	0.00	165	330	ug/kg	1.0					
Benzoik)fluoranihene	υ	0.00	1 65	330	ug/kg	1.0					
Chrysene	υ	0.00	165	330	ug/kg	1.0					
Dibenzo(a.h)anthracene	υ	0.00	165	330	ug/kg	1.0					
Fluoranthene	υ	0.00	165	330	ug/kg	1.0					
Fluorene	U	0.00	165	330	uġ∕kġ	1.0					
Indeno(1,2,3-c,d)pyrene	U	0.00	165	330	ug/kg	1.0					
Naphihalene	υ	0.00	165	330	ug/kg	1.0					
Phenanthrene	υ	0.00	165	330	ug/kg	1.0					
Ругеле	υ	0.00	165	330	ug/kg	1.0					

The following prep procedures were performed:

GC/MS Base/Neutral Compounds

RDH 02/12/98 1430 116419 2

Surrogate Recovery	Test	Percent%	Acceptable Limits	
2-Fluorobiphenyl	M610	89.8	(30.0 - 115.)	
Vitrobenzene-d5	M610	85.8	(23.0 - 120.)	
rphenyl-d14	M610	96.8	(37.3 - 128.)	

Meeting today vinceds with a vision for tomorrow.

Laboratory Certifications

STATE GEL EPI FL E87156/87294 E87472/8 NC 233 SC 10120 10582 TN 02934 02934

Client:

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: March 02, 1998

Page 2 of 2

Sample ID

: SPORT0599-4

Surrogate Recovery

Test

Percent%

Acceptable Limits

M = Metbod	Method-Description	
M 1	EPA 8270	
M 2	EPA 3550	

Votes:

ne qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

I indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct any questions to your Project Manager, Karen Blakeney at (803) 769-7386.

Reviewed By

indicates that a quality control analyte recovery is outside of specified acceptance criteria.

CHAIN OF CUS

DY RECORD

Charleston, South Caroling 20407 P.O. Box 30712

Charleston, South Caro. (803) 556-8171 Use I'm P in the boxes to indicate whether

	Client Name/Facility Na					Γ.		SAM	<u> </u>	NAL.	YSIS	REQU	RED	A)	e temm	es wea	tu spec	ily spec	The con	epsiend	s or inc	ihoti)	,	U			indicate who	
	SPORTENYLY	$T(H) \le$	HÍ.			ER	┝┸╌			پ	L_L_	 	الله اخر	-		1	¥,					1	┞╌┖	-	sample was	fillered at	Max but at Local	'
	Collected by/Company					🗧	şiş		3	Ď.	3	¥.5		7		_	ta bie	a de			1 1 2 1 1 1 1 1 1 1 1 1 1			100	11	71	313	. I
	SPOKTENY DE	TCHAS			.	CONTAINERS	Pag ac	ă	(i)	٠	Z.	S 5		3	ide	, i	TI THE	נו	٦.		Ę	3	I				\mathcal{I}	,
	SAMPLE ID	DATE	TIME	NETT	COMP	• OF	pH. conductivity	TOC/DOC	TOX /€ 0),	Chloride, Fluori Sulfide	Nicrite/Nitrace	VOC - Specify Method required	STAIS.	<u> </u>	Herbicide	Total Phenol	Acid Extractable	B/N Extractables	ਦ ਹੈ ਅਲ∔	Cyanide	Coliform - specify type	SP/AS	10		R	lema	rks	
-01	SPORTO 599-	<u> </u>	0900	_	 - -	1					_			×								·—·		_دید_	T.	<i>C'</i>	Bla	11 <u>A.</u>
	5 porto 599-2	,			 - -	3		_	X				X									X	X	501	Ast	7.30	109-	ا لـــــا
23	SPURTO 5 99-3	<u>2-11-98</u>	1005	1	1	1				_								<u></u> -	X			_	 	So. 1	<u> 1457</u>	34	o9 -9	<u>.</u>
-04	SPURTOS91-4	<u>2-11-98</u>	1025	-		<u> </u>													Χ					So. I	Asr	39	57 -6	>
	5,000T0599-5			1	r	<u>고</u>								X			_		<u>X</u>					Sc. 1	AUT	۸,	6 -	1
-06	SPORTO 597-6	2-11-98	1100	- r	r	2					_		_	X				<u>_</u> .	X					النود	<u> 49</u>	11/3	6 -	۷
	1,			- -		_			-						_	_												
ŀ				-					_														 -	_			·-	
				-	-	_	_	-																			-	
,				+	4	_				_																		
				+	 -	l									. <u></u> -									<u>.</u> .				
							.—-									-				_								
				لـك																								
	Relinquished by:		Date: , , , , , , , , , , , , , , , , , , ,	IJ Z	# <u> </u> 2	Rece	LO	y: 0	11.0	ا بنائن	رج: ٠	1		Relia	gralshe	d by:	E	/ 		<u>.</u> _		2/1.	178	Time: /420	L	16:10	ah	50
	Religious by		b2-11-98 Data: 2/11/98	[bc	" () ()	Rede)ved b	OW P P P	<u>"</u> [3/0	K	M	y	194e: 2/11	98	Time G	00	Rem	orks:									

White = sample collector

Page____ of ____

Yellow = file

Pink = with report

Meeting today's needs with a vision for tomorrow.

Laboratory Certifications

 STATE
 GEL
 EPI

 FL
 E87156/87294
 E87472/87

 NC
 233
 E87472/87

 SC
 10120
 10582

 TN
 02934
 02934

Client

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

c: NPWC00197

Report Date: March 11, 1998

Page 1 of 1

Sample ID

ID طعـا

: SPORT0612-1 : 9803067-01

Marrix

. 9003007-01

MIRTIN

: TCLP

Date Collected

: 02/11/98

Date Received

: 03/03/98

Priority

: Routine

Collector

: Client

Parameter	Qualifier	Result	DL	RL Units	DF Anaiyst Date Time Batch M
Metals Analysis					
Lead	J	23.8	3_39	25.0 ug/l	5.0 MBL 03/06/98 1937 117761 '

The following prep procedures were performed:

TCLP Prep for Metals

JL 03/04/98 1505 117610 2

M = Method	Method-Description	
M 1	EPA 6010A	
M 2	EPA 1311	

Notes:

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

J indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

* indicates that a quality control analyte recovery is outside of specified acceptance criteria.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct any questions to your Project Manager, Karen Blakeney at (803) 769-7386.

Karow Blakener

NP1-700197

White - rample collector

SPORT= 1012

CHAIN OF CUSTODY RECORD

General Engineering Labo s, Inc. 2040 Savage Road Charleston, South Carolina 29407 P.O. Box 30712 Charleston, South Carolina 29417 (803) 556-8171

Page 1 of 1	_									90	80	36	6	L	-	•	Ο.							eston, Sc 556-817		olina 2 94	117
Client Name/Facility N	ame	ملمعاء	^^ 4		ျွာ		SAM	₩.	ANAL	YSIS I	REQUI	RED	2) : 115	1 1 1 1	ks area	to spec	fy spec	ific con	npownd	3 of me	hods		+ 1			imlicate who	
Collected by/Company SAMPLE II)	TW. D	etwoni	T V	יטר	ONTAINE	pH. conductivity	ğ		Charide, Pluoride, Sulfide	Nitrate	Specify 1 required	LS-specify		Berbicide	besol	Acid Extractables	B/N Extractables			n - specify			0	CL	3	160	5
SAMPLE II)	DATE	TIME	WELL	COMO	\$ 0 to	복	TOC/DOC	ğ	Chinary Southlee	Nitrite	VOC.	META	Antara A	Harth	Total Phenol	3 PPV	BAN E.	1	Cynnide	Coliforn 1778				1	Remar	ks	
570RT 0549-2 R 9802336-0	= u 93	940										X						_					T	<u>'LP</u>	- P	b	
				Ш				_									. <u></u>										
													-														_
																	_										
			+	††	-	_		_		-									_							<u> </u>	
			\parallel	††	- -									.—-	П					_							
	 -			╁	-	_		_											_								
			+	++	-					 	—						<u> </u>				_						
			$oxed{+}$	┼		_			_									_	_	_	_	\vdash					
_					-		<u> </u>	 		_								_	_				-				
				\prod	_	_					_																
					_																						
																								_			
Relinquished by:		Date:	Th	re;	Rece	ilved b A	y: 		/	9			Relin	quish	ed by:						Dote	:	Time:	Receive	1 by:		
Relinquished by:		Dute:	710	ne:	Ref	10	z he	. Y	1	ai	بحا	ω	ibete 3/	[k	Y.	:	Rem	arks:					_	•			
White - comple cell	4 1	Vellan - M	ام	n	2_1	14	ı. <u>-</u>		L/				/	1'													

Meeting today's needs with a vision for tomorrow

Laboratory Certifications

STATE GEL EPI FL E87156/87294 E87472/87 NC 233 SC 10120 10582 TN 02934 02934

Client:

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: March 23, 1998

Page 1 of 2

Sample ID

: SPORT0616-1

Lab ID

: 9803208-01

Matrix

: Soil

Date Collected

: 03/09/98

Date Received

: 03/10/98

Priority

: Routine

Collector

: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analy	st Date	Time	Batch M
Volatile Organics										
BTEX - 4 items										
3 enzene	บ	0.00	1.00	2.00	ug/kg	1.0	JEB	03/18/98	1747	118575
Ethylbenzene	ប	0.00	1.00			1.0				
Toluene	ប	0.00	1.00	2.00	ug/kg	1.0				
Xylenes (TOTAL)	ប	0.00	1.00	4.00	ug/kg	1.0				
Naphthalene	Ū	0.00	1.00	2.00	⊔g/kg	1.0				

Surrogate Recovery	Test	Percent%	Acceptable Limits	
Bromoiluorobenzene	BTEX-8260	99,7	(53.5 - 154.)	
Dibromofluoromethane	BTEX-8260	97.6	(63.4 - 136.)	
Toluene-d8	BTEX-8260	97.2	(72.1 - 137.)	
Bromotluorobenzene	NAP-8260	99.7	(53.5 - 154.)	
Dibromofluoromethane	NAP-8260	97.6	(63.4 - 136.)	
Toluene-d8	NAP-8260	97.2	(72.1 - 137.)	

M = Method	Method-Description
------------	--------------------

M 1

EPA 8260

9803208-01

Meeting today's needs with a vision for tomorrow.

Laboratory Certifications

STATE GEL EPI FL E87156/87294 E87472/87-NC 233

C 10120 N 02934 10582 02934

Client:

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: March 23, 1998

Page 2 of 2

Sample ID

: SPORT0616-1

M = Method

Method-Description

Notes:

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

J indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

indicates that a quality control analyte recovery is outside of specified acceptance criteria.

as data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct any questions to your Project Manager, Karen Blakeney at (803) 769-7386.

Daviewed Ru

P O Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29414

Meeting today's needs with a vision for tomorrow

Laboratory Certifications

STATE GEL EPI FLXCK E87156/87294 E87472/874 233

10120 02934

10582 02934

Client

Supervisor of Ship Building & Conversion SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: March 23, 1998

Page 1 of 3

Sample ID

: SPORT0616-2

لله فهـآ Matrix

: 9803208-02

: Soil : 03/09/98

Date Collected Date Received

: 03/10/98

Priority

: Routine

Collector

: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analy	st Date	Time	Batch	M
Volatile Organics											
BTEX - 4 yems											
Benzene	U	0.00	1.00	2.00	ug/kg	1.0	JEB	03/18/98	2001	118575	:
Ethylbenzene	U	0.00	1.00	2.00	ug/kg	1.0					
Toluene	U	0.00	1,00	2.00	ug/kg	1.0					
Xylenes (TOTAL)	U	0.00	1.00	4.00	ug/kg	1.0					
Naphthalene	U	0.00	1.00	2,00	ug/kg	1.0					
Extractable Organics											
Polynuciear Aromatic h	lydrocarbons -	16 uems									
Acenaphthene	U	0.00	4900	9800	ug/kg	10.	RLC	03/16/98	2206	118154	2
Acenaphthylene	U	0.00	4900	9800	ug/kg	10.					
Anthracene	U	0.00	4900	9800	ug/kg	10.					
Benzo(a)anthracene	U	0.00	4900	9800	ug/kg	10.					
Benzo(a)pyrene	U	0.00	4900	9800	ug/kg	1Ō.					
Benzo(b)fluoranthene	U	0.00	4900	9800	ug/kg	10.					
Benzo(ghi)perylene	U	0.00	4900	9800	ug/kg	10.					
Benzo(k)fluoranthene	U	0.00	4900	9800	ug/kg	10.					
Chrysene	U	0.00	4900	9800	ug/kg	10.					
Dibenzo(a,h)anthracene	. U	0.00	4900	9800	ug/kg	10.			•		
Fluoranthene	U	0.00	4900	9800	ug/kg	10.					
Fluorene	U	0.00	4 90 0	9800	ug/kg	10.					
Indeno(1,2,3-c,d)pyrene	. U	0.00	4900	9800	ug/kg	10.	•				
Naphthalene	U	0.00	4900	9800	-	10.					
Phenanthrene	U	00,0	4900	9800	ug/kg	10.					
Рутепе	U	0.00	4900	9800	ug/kg	10.					

[?] following prep procedures were performed:

.C/MS Base/Neutral Compounds

MAL 03/13/98 1120 118154 3

+9803208-02+

Meeting today's needs with a vision for iomorrow

Laboratory Certifications

STATE GEL FL NO SO TN E87472/874 E87156/87294 233 10120 10582 02934 02934

Client:

Supervisor of Ship Building & Conversion SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: March 23, 1998

Page 2 of 3

Sample ID

: SPORT0616-2

Qualifier Parameter

Result

DL

RL Units

DF Analyst Date Time Batch M

Comments:

A dilution was required for Extractable Organics due to matrix interference. As a result, the detection limits are elevated.

Surrogate Recovery	Test	Percent%	Acceptable Limits	
? Fluorobiphenyl	M610	0.00*	(30.0 - 115.)	
obenzene-d5	M610	0.00*	(23.0 - 120.)	
p-Terphenyl-d14	M610	0.00*	(37.3 - 128.)	
Bromofluorobenzene	BTEX-8260	76.3	(53.5 - 154.)	
Dibromofluoromethane	BTEX-8260	106.	(63.4 + 136.)	
Toluene-d8	BTEX-8260	114.	(72.1 - 137.)	
Bromotluor obenzene	NAP-8260	76.3	(53.5 - 154.)	
Dibromotluoromethane	NAP-8260	106.	(63.4 - 136.)	
Toluene-d8	NAP-8260	114.	(72.1 - 137.)	

M = Method	Method-Description	
M 1	EPA 8260	
M 2	EPA 8270	
M 3	EPA 3550	

Notes:

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

J indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

indicates that a quality control analyte recovery is outside of specified acceptance criteria.

Meeting today's needs with a vision for fomorrow

Laboratory Certifications

STATE FL NC SC TN GEL EPI E87156/87294 E87472/87 233 10120 10582 02934

02934

Client:

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: March 23, 1998

Page 3 of 3

Sample ID

: SPORT0616-2

M = Method

Method-Description

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct any questions to your Project Manager, Karen Blakenev at (803) 769-7386.

P.O. Box 30712 • Charleston, SC 29417 • 2040 Savage Road • 29414

Meeting today's needs with a vision for 5 moreon

Laboratory Certifications

STATE GEL FL NC SC TN E37156/87294 ES7472/874

10120 02934 10582 02934

Client

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

c: NPWC00197

Report Date: March 23, 1998

Page 1 of 2

Sample 1D Lab ID

: SPORT0616-3

Matrix

: 9803208-03 : Soil

Date Collected Date Received

: 03/09/98 : 03/10/98

Priority

: Routine

Collector

: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analy	st Date	Time	Batch M
Volatile Organics										
BTEX - 4 items										
tene	U	0.00	1.00	2.00	ug/kg	1.0	JEВ	03/19/98	1447	118575
Luiylbenzene	U	0.00	1.00	2.00	ug/kg	1.0				
Toluene	U	0.00	1.00	2.00	ug/kg	1.0				
Xylenes (TOTAL)	U	0.00	1.00	4.00	ug/kg	1.0				
Naphthalene	U	0.00	1.00	2.00	ug/kg	1.0				
Extractable Organics										
Polynuciear Aromatic H	lydrocarbons -	16 items								
Acenaphinene	U	0.00	165	330	ug/kg	1.0	RLC	03/16/98	2238	118154 2
Acenapnthyiene	U	0.00	165	330	ug/kg	1.0				
Anthracene	U	0.00	165	330	ug/kg	1.0				
Benzo(a)anthracene	U	0.00	165	330	ug/kg	1.0				
Benzo(a)pyrene	U	0.00	165	330	ug/kg	1.0				
Benzo(b)fluoranthene	U	0.00	165	330	ug/kg	1.0				
Benzo(ghi)perylene	U	0.00	165	330	ug/kg	1.0				
Benzo(k)fluoranthene	U	0.00	165	330	ug/k g	1.0				
Chrysene	U	0.00	165	330	ug/kg	1.0				
Dibenzoiah)anthracene	: U	0.00	165	330	ug/kg	1.0				
Fluoranthene	U	0.00	165	330	ug/kg	1.0				
Fluorene	U	0.00	165	330	ug/kg	1.0				
Indeno(1,2,3-c,d)pyren	e U	0.00	165	330	ug/kg	1.0				
Naphthalene	U	0.00	165	330	ug/kg	1.0				
Phenanthrene	U	0.00	165	330	ug/kg	1.0				•
Pyrene	U	0.00	165	330	ug/kg	1.0				

following prep procedures were performed:

MS Base/Neutral Compounds

MAL 03/13/98 1120 118154 3

(803) 556-8171 + Fax (803) 766-1178 Printed on recycled paper.

9803208-03

Heeting roday's needs with a vision for formorrow.

Laboratory Certifications

STATE GEL EPI 728.87 E87156/87294 E87472/87 233 10120 10582 02934

02934

Client:

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: March 23, 1998

Page 2 of 2

Sample	ΙD
--------	----

SPORT0616	6-3
-----------	-----

Surrogate Recovery	Test	Percent%	Acceptable Limits	
2-Fluorobiphenyi	M610	64.3	(30.0 - 115.)	
Nitrobenzene-d5	M610	55.7	(23.0 - 120.)	
p-Terphenyl-d14	M610	100.	(37.3 - 128.)	
Bromorluorobenzene	BTEX-8260	0.08	(53.5 + 154.)	
Dibromofluoromethane	BTEX-8260	68.3	(63.4 - 136.)	
Toluene-d8	BTEX-8260	113.	(72.1 - 137.)	
Bromofluorobenzene	NAP-8260	80.0	(53.5 - 154.)	
Dibromofluoromethane	NAP-8260	68.3	(63.4 - 136.)	
Toluene-d8	NAP-8260	113.	(72.1 - 137.)	

M = Method	Method-Description		
M 1	EPA 8260	 	
M 2	EPA 8270	 	·
м 3	EPA 3550		

Notes:

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

J indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit,

indicates that a quality control analyte recovery is outside of specified acceptance criteria.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct

any questions to your Project Manager, Karen Blakeney at (803) 769-7386.

Meeting today's needs with a vision for comorrow,

Laboratory Certifications

 STATE
 GEL
 EPI

 FL
 E87156/67294
 E87472/874!

 NC
 233
 E87472/874!

 SC
 10120
 10582

 TN
 02934
 02934

Client

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: March 23, 1998

Page 1 of 2

Sample ID

: SPORT0616-4

Lab ID Matrix

: 9803208-04

Manix

: Soil

Date Collected

: 03/09/98

Date Received

: 03/10/98

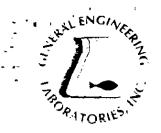
Priority

: Rouune

Collector

: Client

Parameter	Quallier	Result	DL	RL	Units	DF	Analy	st Date	Time	Batch M	
Volatile Organics											
BTEX - 1 items											
me	U	0.00	1.00	2.00	ug/kg	1.0	JEB	03/18/98	2215	118575 1	
newylbenzene	U	0.00	1.00	2.00	ug/kg	1.0					
Toluene	U	0.00	1.00	2.00	ug/kg	1.0					
Xylenes (TOTAL)	U	0.00	1.00	4.00	ug/kg	1.0					
Naphthalene	U	0.00	1.00	2.00	ug/kg	1.0					
Extractable Organics											
Polynuciear Aromatic h	lydrocarbons -	16 items									
Acenaphthene	U	0.00	166	331	ug/kg	1.0	RLC	03/16/98	2309	118154 2	2
Acenaphthylene	U	0.00	166	331	ug/kg	1.0					
Anthracene	U	0.00	166	331	ug/kg	1.0					
Benzo(a)anthracene	J	173	166	331	ug/kg	1.0					
Вепло(в)рутеля		349	166	331	ug/kg	1.0					
Benzo(b)fluoranthene		358 Eleanu 6604	166	331	ug/kg	1.0					
Benzo(ghi)perylene	J	251	166	331	ug/kg	1.0					
Benzo(k)fluoranthene	U	0.00	166	331	ug/kg	1.0					
Chrysene	J	195	166	331	ug/kg	1.0					
Dibenzo(a.h)anılır acene	. U	0.00	166	331	ug/kg	1.0					
Fluoranthene	U	0.00	166	331	ug/kg	1.0					
Fluorene	U	0.00	166	331	ug/kg	1.0					
Indeno(1,2,3-c,d)pyrene	e J	208	166	331	ug/kg	1.0					
Naphthalene	ប	0.00	166	331	ug/kg	1.0					
Phenanthrene	U	0.00	166	331	ug/kg	1.0					
Рутепе	Ū	0.00	166	331	ug/kg	1.0					


The following prep procedures were performed:

3 Base/Neural Compounds

MAL 03/13/98 1120 118154 3

+9803208-04+

Meeting today's needs with a vision for comorrow.

Laboratory Certifications

STATE GEL FPI FL, E87156/87294 E87472/874 NC SC TN 233 10120

02934

10582 02934

Client

Supervisor of Ship Building & Conversion

SUPSHIP-Portsmouth Detachment-Env.

1899 North Hobson Ave.

North Charleston, South Carolina 29405-2106

Contact:

Mr. Bill Hiers

Project Description:

SUPSHIP-Portsmouth Detachment

cc: NPWC00197

Report Date: March 23, 1998

Page 2 of 2

	Sample ID	: SPORT0616	5-4		
Surrogate Recovery	Test	Percent%	Acceptable Limits	, , , , , , , , , , , , , , , , , , , 	
2-Fluorobiphenyl	M610	69.9	(30.0 - 115.)		
Nitrobenzene-d5	M610	58.4	(23.0 - 120.)		
p-Terphenyl-d14	M610	111.	(37.3 - 128.)		
Bromotluorobenzene	BTEX-8260	89.7	(53.5 - 154.)		
Dibromorluoromethane	BTEX-8260	107.	(63.4 - 136.)		
Toluene-d8	BTEX-8260	107.	(72.1 - 137.)		
Bromofluorobenzene	NAP-8260	89.7	(53.5 - 154.)		· Article
Dibromofluoromethane	NAP-8260	107.	(63.4 - 136.)		
Toluene-d8	NAP-8260	107.	(72.1 - 137.)		

M = Method	Method-Description	
M 1	EPA 8260	
M 2	EPA 8270	
M 3	EPA 3550	

Notes:

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

J indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

* indicates that a quality control analyte recovery is outside of specified acceptance criteria.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct any questions to your Project Manager, Karen Blakeney at (803) 769-7386.

Printed on recycled paper

CHAIN OF CUSTODY RECORD

General Engineering La⁴
2040 Savage Road
Charleston, South Carolina 29-07
P.O. Box 30712
Charleston, South Carolina 29417
(803) 556-8171

Page of				_			- (18	13	<u> 20</u>	8_			_						(803) 556 8171
Client Name/Facility Name			l s				EY IAN	S REQ	UIRED	<u>(x) "</u>	ve tema	As area	in speci	בון ל <u>ו</u>	I'n com	Daniad L	or me	hods		Use 6 or P in the boxes to indicate whether sample was filtered antior preserved
Collected by/Company	12:1111		CONTAINER	ndoctivity	тослос		de, Fluoride,	VOC - Specify	Method required	*	ž	Total Phenol	Acid Extractables	B/N Extractables		<u>.</u>	Coliform - specify type	14/ X		CCL 31697
SAMPLE ID I	DATE TIME	WELL	P OF C	pH. α	TOC	тох	Sulfide	VOC.	Metho	Pestici	Herbicide	100	Acid E	BAN E.	PCB's	Ç	Colifor	P. Tex	40	Remarks
seautour 13	I	1 1 1 1	, 1									_						Х	Γ	AST 39.9.8 55.1 The B. A.
1-13812 11 - 13	4.78 0950	<u> </u>											·				:	<u>X</u> .	<u>x</u>	457 3934 -1 So
<u> </u>	10 25	; - - - - -							·		_					į	_	X	<u>X</u>	As 3907 - 10 50. As 3101 211 30.
5 Burralio 43/	1/48 1059	_\- - -	۔						<u>_</u> _			<u> </u>	_					<u>X</u>		AN 3/07 211 30
		-				-					_		_					لـــا		
		_ - - - -	- -									_							_	
			+-			- -		_	-	ļ <u>.</u> .		_		—						
		- - - -	-		-	- -					<u> </u>									
		_			-	!		_}	_				 .							
		_ - - -	-			.									- ~ -					
																		_		
Relinquished by:	Date:	Thre:	1.	ived by	" []	2	11		1	Relia	iquish /	ed by:	21	1 :		/		Date	K 2.	Time: Received by:
Resignations by:	11998	P 1435	Roce	ived by		<u>"</u> BQ	oka	M)	1)	Date 3	 	Time 14.	35	_	4. 4). orko: /	J	,l	<i>-4 1</i> 4	, 7 <u>7</u> 1	<u> </u>

Attachment III

Certificate of Disposal (tank)
Disposal Manifests

AST Certificate of Disposal

CONTRACTOR

Supervisor of Shipbuilding, Conversion and Repair, USN Portsmouth, VA Environmental Detachment Charleston 1899 North Hobson Avenue North Charleston 29405-2106

Telephone (803) 743-6482

TANK ID & LOCATION

AST 3909, South Hobson Ave., N. Charleston, SC

DISPOSAL LOCATION

Bldg. 1601 Tank Cleaning & Disposal Area Charleston Naval Complex

T	P	F	0	F	T	Δ	N	K	•
		_	\smile			_			٠

SIZE (GAL)

Fuel Oil

200,000 gal.

CLEANING/DISPOSAL METHOD

The tank was cleaned with a steam cleaner, cut into sections, and disposed of as recyclable scrap metal.

DISPOSAL CERTIFICATION

I certify that the above tank has been properly cleaned and disposed of as recyclable scrap metal.

John Amey

(Date)

GENERATOR PROFILE SHEET

PLEASE PRINT IN INK OR TYPE

NATIONSWASTE, INC.			
P. O. BOX 90723			Internal lise Only
COLUMBIA. SC 29290			
ISHI WESTVACO ROAD		Speca	al Waste Profile Number
EASTOVER. SC 29044	E7 () & (4)	Finis	ation Date:/_ /_
Phone: 803-353-0563 Fax. 803-35	3.1 - (15 (9	E NOTE	3000 DOLC/
A. GENERATOR INFORM			
Generator CHARLESTAN N	AVAL COMPLE	<u> </u>	
Physical Address /899	U. HOBSON		-
Ciry, State, Zip N. CHAR	KSTON SC	29405	
Billing Address (If different from	Physical) PENN	1-VAC, Inc.	PO BOX 62679
City, State, Zip N. CHARLE	STON, SC	29419	
Contact Name TODD DA			
Telephone Number (803) 743	-6777.224F	ax Number (803)	743-9413
EPA ID Number N/A			
County CHARLESTON	G	enerator SIC Code	AYA
B. WASTE DESCRIPTION	(See Instruction	ons)	
Name of Waste #2 f #6	oil shudge	Vienin	
Original Process Generating Was	e stude	Building is	tank
Category: Type I Special Was		Type	II Special Waste
Estimated Volume 30 Ton		24	
Special Handling Instructions/Sur		ation	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
CONSTITUENT R	LANGE CO	ONSTITUENT	RANGE
	toral at least		Nine total at least
40 h 41 80 do = E-	100%		190%
#2+#6 Sludge 50			%
Cement Film dust 25	-50%	·	%
	·%		
	%		<u> </u>
	.: % _		%
	<u></u> % _		%
	<u></u> %	· · · · · · · · · · · · · · · · · · ·	%
Does the Waste Contain any of the	ne following?		
	YES ACTUA	L (If you checked y	es }
PCBs <u>X</u>		ppm	
Cyanides X		ppm	
Sulfides X		ppm	
C. PHYSICAL PROPERTI	Tre .		
C. I STORE LAGIER			
Color(s) Odor (Check One		Danied from S	7.0 4 E
Remark One) d	Physical State @	
None X Mil	" Zroug	_Liquid _ Ser	ni Solid Powder
Coley Describe Pere	seem	Sludge _XSal	id Other:

		
Specific Gravity:	Layers:	Free Liquids:
	<u> X</u> Single	Yes _XNo
N/A	Bi-layered	(If Yes, then)
(Can use range)	Mutiple #	Volume
pH: . <u>< 2</u>	<4 X4-10 1>1	0 + <12.5 ☐ ≥12.5 ☐ N/A
Flash Point: I<73°F (.7)	37-997F 31007-139 °F (2140	I'- 199°F (D≥200°F KN.A. Closed Cup (Copen Cup
Method of shipment:	Other	ON ulk Sludge X Bulk SolidDrum/Box
Supplemental Shipping	Information: M/A	
Is this a DOT hazardou	s Material? X No	Yes (If yes, complete the following information)
	Name Non Requ	<u>Lated</u>
Technical Name(s) (if a		
		dentification Number N/A
Packing Group N/F	Reportable Quantity	(RQ) (Pounds or Kilograms) <u>A/A</u>
Table Label N/A	1174	
Emergency Response C		Emergency Guide Book Page # AVA
24 Hour Emergency Ph	CODE # _ /V / M	custReach amos pook 1956 # VIV
information regarding is disclosed. All types and identified in Section B. This waste is not a "Ha This waste does not con a. Regulated of the Regulated between the Regulated and Polymore as specified in South C. The attached analytical to the sampling method of the Regulated o	mown or suspected hazar of amounts of special was of this form sandous Waste" as defining adioactive materials. concentrations of PCB's (no of TPH (Tota) Petroleum Aromatic Hydrocarbon of BTEX (Bonzone/Tolum the maximum concentrations of the EPA 40 CFR arolina Hazardous Wastel data (if any)was derived a specified in EPA 40 CI in the character of the was Landfill prior to providing ded is based on: (check of	(Polychiorinated Biphenyl's). In Hydrocarbon) from Gas, Diesel or PAH as) Compounds. ene/Ethylbenzene/Xylene). mration of contaminants for the toxicity Part 261.24 and for wasta being disposed of in SC a Management Regulations (R61-79.261.24). If from a representative sample obtained according FR 261.20 (c) or an equivalent method. see, the Generator shall notify NationsWaste, Inc. as ing the waste to NationsWaste, Inc. at the Northeas
Other: Explain		-
Idd M. i) aikey	WASTE MANAGER
Generator's Authori	zed Signatory	Title
	DAILEY	WASTE MANAGER Title May 14, 1997 Date
Printed Nan	ne	// Date

Plant: (803) 496-5033

Fax: (803) 496-7573

* CERTIFICATE OF MATERIALS REUSE *

June 12, 1997

This certificate is to serve as evidence of total reuse of solvents and/or waste oil received from your company as follows:

mo F 0.4	DATE	MAN NO	<u>QUANTITY</u>	POUNDS	
F0584 U.S.Navy	y-Charleston En	v. Detach			
_	9 7 /05/23	52297	3762.00	30 8 20.00	
	97/05/27	52197	4274.00	33040.00	
=======================================	******	========		=======================================	
TOTAL	2		8036.00	63860.00	

This material was used as a fuel in our rotary cement kilns, resulting in its complete destruction, and this meets all requirements as defined in 40 CFR Part 268, Subpart D.

Very truly yours,

Donna M. Davis

Facility Sales Manager

DMD/ssb

cc: Grr!

APPENDIX B GEOLOGIC BORING LOGS

B	$\overline{}$				$\overline{}$		$\overline{}$	
ж.		w	ır	u	-		61	
_	_			•	_	_	v	•

	JECT	NAME NUME	<u>:</u>	CN	C300	6	18 to 19	BORING N	UMI	BER: CNC 19 BO 4/27 199 By Howse Per Trille	1			
DRII.	LING	NUMI COMI	BEK: PANY	012	donates			DATE: GEOLOGIS	sτ· '	7/27 199				
DRIL	LING	RIG:	,	Jun	annie Me			DRILLER:		Per mile		-		—
						1ATE	RIAL DESCRIP	TION			PID/FI	D Re	ading	(ppm)
Sample No. and Type or RQD	(FL) or	Blows / 6" or ROD (%)	Sample Recovery / Sample Length	(Depth/Ft.) or Screened Interval	Soil Density/ Consistenc y or Rock Hardness	Color	Material Clas	•) % C % •	Remarks	Sample	Sampler BZ		Driller BZ*
	0	\angle		,		red	Iran @	fi			%	0		0
			23/		lopse	en	Gray of son	du		il mint	}			
	3		73			11/2	annelis ex	anno t	m.	18280103		1		\sqcap
							7	v sv gr		18 F 80103	0/0			0
1			10%	,	_	od	dily and	4/		200 De 2009	1			Ť
	6		- 73			a my	and Cran	()) ~ /	-	wet	1			М
	-						2 grange			- Net	1			П
					_			-			†			┌┤
<u> </u>											┼─	_		\vdash
						<u> </u>					╁╾			Н
						 					┼			Н
		$\overline{}$		l		_			_		 		-	\vdash
		$\overline{}$												\vdash
		-							 			_		\vdash
		$\overline{}$				_					 		_	Н
<u> </u>						-			ļ		┼─	-		\vdash
		-				-			 		+-			├─┤
		-							<u> </u>	-	+	_		\vdash
		-									-	-		$\vdash \vdash$
		\leftarrow				_		,			-	-		$\vdash \vdash$
						<u> </u>		_			+		_	\vdash
									_		_			
		/_										_		
		/_		·								_		Ш
_		/_,										_		Ц
Marshare 1														
** Inclu Rem	de mon arks:	itor readin	in 6 foo		@ borehole	. Incre	ase reading frequency	if elevated repon		d. Drilli Background	ng A d (pp	rea m):		

		NAME NUMI		<u>CN</u>	(- 1	20N	E G BORING N DATE:	UMI	BER: CNC 18 - B	Ø	12	<u>-</u>	
		СОМ		7	DEWA	775		ST:	1-29-49 51800				
		RIG:		F-25		_	703 DRILLER:		M. Cocepi	1-1/			_
							RIAL DESCRIPTION		· ·	PID/Fil	n Pa	dina	
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil			ນ	Remarks	Sample	· Sampler BZ	Borehole**	Driller 82**
	1				VSolt	1 tere	SILIY, SAND & SHANEZ		DAY	2			
	2				V.Sdf	11	SILTY, SAND & SHANEZ		DAY	2			
	3	./			Solf	46	MAY, SUTY Org. Clay		Moist	2			
Y	4	Ζ,	4		Soft	//	11 11	_	Moist to Wet	2			
<u> </u>	5				5,11	WG	,	2	185FB102-8405	7			_
	6		•		. 9	11	11 11		Motst	7		_	\vdash
	7	_	•		11	4	(((2	_	_	
	8	/	4		11	11	(1 11		Saturated	5	\dashv	_	_
	9	-		,	1 0 00 1 55		C.f.	G.	Moist	6		\dashv	\dashv
•	10	-		/0	ed SHF	DIAC (K MEDITA	m	11/10121	5		\dashv	
¥	//	$\overline{}$	1.			11	C / MULCS	1 F - 122		5	_		
<u> </u>	13		4			DK: SRN	MUDI	H.	18GFBO2-12 Saturated	7			\dashv
	12 14					<i>S.KAP</i>	Silty Sand		11	-		\dashv	\dashv
	15					_	11		1.1			\exists	
	/6		Ø			_	11		/ \				
	17				_	W. SEAY	Corre Carde		Saturated				
	18						Silty Sand		11				
	19						1 1		11	_			
	20		Ø			-	l (11		_		
	2/				1	DK. GA14			Saturated	_			
	22				~	_	Silty Sand		9				
	23					~-	ιζ		11				
	24	/_	Ø		_		17		11		,		
ş	2 5				1	1	11		11	-			
		_	r rock bro		@ hau-t>	1		. .	a. Drillir	α Δ.	·00	_	
Rema		nor readin	ig in 6 1001	intervals (w porenole.	incre	ase reading frequency if elevated repons	е геа	Background	_		7	<u></u>
Conv	erted	to We	II:	Yes			No Well I.D). #:					_

Page 2 of 2

		NAM	E:	CA	/C	21	DNE G BORING N	UMI	BER: CNC 10 - 4 - 29 - 9 5/800	\mathcal{B}	Ø	2	<u> </u>
راطط سینین	JECT		BEK:				DATE:	эт∙	11-29-9	5			_
DRII	LING	RIG:	CANT.		0 tu	1	<u>A</u> GEOLOGIS 5-40∂ DRILLER:	3 1.	M. COLEMAN				
		7110.	_				RIAL DESCRIPTION		Pr Coccypiero	5:5:5			_
Sample No. and Type or RQD	(FL)	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soll Denzity/ Consistenc y			u s c s	Remarks	Sample Sample	Sampler BZ		Driller BZ**
	2/				Herdness	De.	C: 11 a A					_	
	26	/_			_	1/2/2	Silty Sand		Saturated				
<u> </u>	27			<u> </u>		1/	′ (,		1,				
	28		0			4.4	11		((-		
	29		7										
	30												
									<u> </u>				
ļ										<u> </u>			
*													
										ļ			
													_
			_										
			_							ļ. <u>.</u>	_		
					ļ <u> </u>					<u> </u>			_
ļ			<u> </u>					ļ					
					_			_					
	<u> </u>									_			
		/								ļ. <u>.</u>			
		/								_			
<u> </u>		<u>//</u> ,			_								<u> </u>
		/	<u></u>					_		-		<u> </u> _	ļ
<u> </u>				-				ļ				<u> </u>	
<u></u>]											_	
_پور.،	<u>.</u>												
** Inclu		oring, ente			@ borehole	. Incre	ase reading frequency if elevated repon	se rea	od. Drilli Background				
Con	ortec	to Me	.II·	Vec			No Wall I	\ #·					

							BOR	RING LOC	3		age <u>-</u>			<u>L</u>
PRO.	JECT	NAMI NUMI						BORING N DATE: GEOLOGI	- IUME	SER: CNC 18 4-29 8/3-0	BQ	13	1	_
		i COIVII i RIG:	FANI.		1D 40	14-2	n	GEOLOGI	J1.	MILLER/C	01PM	m.		—
							RIAL DESCF			/			nding (
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistenc y or Rock Hardnass			lassification	1 % C % *	Remarks	Sample	Sampler BZ		Driller BZ**
	1					Ц.	Sandy,	silt		DAY	8	П	\neg	ヿ
•	2						A 1			Meist	8	П	\Box	
	3		2				17			<u>(</u> 1	8			ヿ
V	4						11			17	8			
	5						Some C	LAY		U	R			
	6		2			DX. SBAY	SILTY, G	LAY 26. CLAV		VET	50	£		
	ヌ			₩.			1 3			VET/	120	+		\setminus
	9]]		RAG	4			SATURATED	120	14		
	9		2				11				120	14		\/
				EOB							1	-"	4	\triangle
														_
											<u> </u>			_
		\angle						DIF	1	7	\perp			_
		/_	,					<u> </u>		<u> </u>		Ш		_
		\angle												_
			1						<u> </u>					_
		\angle							ļ				Щ	_
		/											\vdash	_
													<u> </u>	_
								_	<u> </u>					_
											\perp			_
									<u> </u>					_

"Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read.

Remarks:

Converted to Well: Yes

No

Well I.D. #:

* When rock coring, enter rock brokeness.

Page $\frac{1}{2}$ of $\frac{1}{2}$

		NAME					BORING N	MUN	BER: CNC/8-	<u>B</u>	17		
		NUM					DATE:	CT.	4-29 SBC0				
		COMP RIG:	-AINT.		KID	j A	GEOLOGI ANFO DRILLER:		COLEMAN				
D							RIAL DESCRIPTION	Т		PID/FI	D Par	adina	<u>=</u>
Sample No. and Type or RQD	(F1.) or	Blows / 6" or RQD (%)	Sample Recovery / Sample Langth	Lithology Change (Depth/Ft.) or Screened interval	Soli Denaity/ Consistenc y Or Rock Hardness		Material Classification	U S C S .	Remarks	Sample	Sempler BZ	Borehole**	Driller BZ**
	1					14. 8a.	Sandy Silt.	 	MOST	8			Н
	2						//		11	8			
 	3		3		_		1 /	+-	()	8			Н
	4						11		MOIST	W.			
	5			-			CRAVEL			M			
	6		1			BLA	W 11			15			
	7						()			w.	久		
	8						11	12	IFIEL				
	9		0			àK	SOME CAME		PETARANCE				
L	10								Codor				
	//						()						
	12		O			ĈΚ	. //			\mathbf{V}		_	
				EOB								L	
										·	_	L	
		<u>/</u>						<u> </u>				_	igsqcup
		<u>/</u> ,	•									<u> </u>	<u> </u>
												L	L
		/_						<u> </u>				L	$oxed{oxed}$
		\angle						<u> </u>				<u> </u>	igspace
		/_						 		 -		_	
								┿	_	\perp		_	igspace
_		/						-		-	-	\vdash	\vdash
								 		\bot		L	igspace
					_			_				<u> </u>	igspace
, _													
	de mon	oring, ente			@ borehole	. Increa	ase reading frequency if elevated repo	nse rea	.d. Dril Backgrour	ling A nd (pp		_	
Con	,odoc	to We	11-	Yes			No Well I	D #-					

		NAME NUME					DATF.		BER: CNC 18.	BØ	5		
		COM			-		GEOLO	GIST:	SISCO		-	_	
		RIG:		5/17	LOAT	n 6Ω	DRILLE	R-	SISCO				
		· · · · · · ·	Γ	<u></u>				· · · ·	COLON				=
Sample No. and Type or RQD	(FL) or	Blows / 6" or RQD (%)	Semple Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soll Density/ Consistenc y or Rock		RIAL DESCRIPTION Material Classification	U S C S *	Remarks	Sample Sample	Sampler BZ	Borehole**	Driller BZ**
	0				Hardness	17 j	Sitte on 1		- Server	Hà			
	1					<u>}</u> A.	Silty sands		DIFF	1992			
	2		_		ı /	<u> </u>			MED				
	3		1				some clay .		MOST	10			Ī
	4												
	5				-	7							
	6		0										
	7												
	Ø					<u> </u>							
	9		(Y	•	BL.	Silty org. clay	,	WET	15	-		
	10						/ /		SAT.				
	//								SAT.	750	4		
	12		3		-	BL.	SILY ORG CLA	4	SATURATED.				
				EOB									
	,		=										
		\angle											
			-										
		\angle											
											_		
		\angle											
						<u> </u>	,		•				
" Inclu Rema	de mon arks:		ig in 6 fool	l intervals (@ borehole.	. Incre	ase reading frequency if elevated re		d. Dri Backgroui	ling Ai nd (pp		10	9
Conv	erted	to We	(I):	Yes		_	No Wel	III,D.#:					

BORING NO.:

OVERBURDEN MONITORING WELL SHEET

PROJECT CWC	LOCATION: Site DRILLER	
PROJECT NO.	BORING Mwb/ METHOD: DPT	
ELEVATION	DATE 1-/25/44 DRILLING	
FIELD GEOLOGIST 7 Brown	DEVELOPMENT: NA	
	ELEVATION OF TOP OF SURFACE CASING:	
	ELEVATION OF TOP OF RISER PIPE:	
	STICK-UP TOP OF SURFACE CASING:	
	STICK-UP RISER PIPE:	
	I.D. OF SURFACE CASING:	_
	TYPE OF SURFACE CASING:	_
- our V	TYPE OF SURFACE SEAL: Concerts - Flo	7 16 F
GROUND C	THE OF SURFACE SEAL. CONTING - FLO	<u>an</u> mn
ELEVATION	2	_
	RISER PIPE I.D.:	
	TYPE OF RISER PIPE: PUE - Should	40
		_
	BOREHOLE DIAMETER:	_
	TYPE OF SEAL:	
		_
	ELEVATION / DEPTH OF SEAL:	3/5
	TYPE OS SEAL: Fine Sund	
	0.50711.700.05.011.01.01	4'
	DEPTH TOP OF SAND PACK:	
	ELEVATION / DEPTH TOP OF SCREEN:	,
	ELEVATION PER TA TOP OF SCREEN.	
 	TYPE OF SCREEN: PUL-40	
	SLOT SIZE X LENGTH: 10 X 0.01"	
	I.D. OF SCREEN:	
	TYPE OF SAND PACK: Med on Son	()
	TYPE OF SAND PACK: Med Sec.	<u>V</u>
		<u> </u>
	ELEVATION / DEPTHBOTTOM OF SCREEN:	1
ر المراجع المر	ELEVATION / DEPTH BOTTOM OF SAND PACK:	-
	TYPE OF BACKFILL BELOW OSSERVATION	
	WELL:	
	ELEVATION / DEPTH OF HOLE:	1210
		

							<u>B</u> (ORI	IG LOC	3		Р	age ַ		of _	1
		NAM		Cu	<u>ce</u>	_		_	BORING N	UM	BER: 1	nwol	- 5	i τ-	el {	<u> 8</u>
		NUMI							DATE:			7/125				
DRIL	LING	COM	PANY:		. کیسے اور	ر سن	1		GEOLOGIS	ST:						
DRIL	LING	RIG:			duto	لسر		_	DRILLER:			Bund				
					M	IATE	RIAL DE	SCRIP	TION				PID/	FID Re	ading	(ppm
Sample No. and	Depth (FL) or	Blows / 6" or RQD	Sample Recovery /	Lithology Change (Depth/Ft.	Soil Density/				•	U S				Z	•	

DRIL	LING	RIG:			Hw-in	لسب	DRILLER:	,	J. Bound			_	
					M	IATE	RIAL DESCRIPTION		-	PID/FI	D Rea	ding	(ppm)
Sample No. snd Type or RQD	(FL) or	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Intarval	Soil Density/ Consistenc y or Rock Herdness	Color	Material Classification	U	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
	2	-				Bun	Sand-Mel.		D-1				
	3					1	Sant Polls.		1757			•	
	4	\angle	३/५			/	1		<u> </u>				
	۶					L							
	7		11.7				Come		Su tom tul				
	4		6/4		_		<u> </u>		<u> </u>				
	10			۱۸.	1	4							
-	11		6/ _U	/ \odo		/		_					
			/4-										
		/	 										
						_							
	<u> </u>												
		/											
								_			٠		
											L		Ĺ

^{*}When rock coring, enter rock brokeness.

Drilling Area	
Background (ppm):	

Converted to Well:

Yes

No

^{**} Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. Remarks:

BORING	NO ·	
DOMING	NO.	

OVERBURDEN MONITORING WELL SHEET

PROJECT CWC		1: Sita 18	DRILLER	
PROJECT NO.	BORING	mwoz	METHOD: DPT	
ELEVATION	DATE	+125/99	DRILLING	
FIELD GEOLOGIST K. 13, and	_	<u> </u>	DEVELOPMENT: NA	<u> </u>
	_	 -	<u> </u>	
			<u>_</u>	
	<u> </u>	ELEVATION OF TOP OF	SURFACE CASING:	
 	}	ELEVATION OF TOP OF F	RISER PIPE:	
■ I ┌─┐ ├ ◀-	 	STICK -UP TOP OF SURF	ACE CASING:	-
│		-STICK-UP RISER PIPE:		
│		I.D. OF SURFACE CASING		-
	j	TYPE OF SURFACE CASI	NG:	_
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			- 7 + + -1	- () (of
GROUND V		TYPE OF SURFACE SEAL	: Carrete - Flu	sh Mux
ELEVATION				- ,
		DIASD 0105 1 0	125	
		RISER PIPE I.D.:	125 Puc 40	-
		TYPE OF RISER PIPE:	100 40	_
		BOREHOLE DIAMETER:		-
		TYPE OF SEAL:	-	-
		THE OF SEAL.		-
				-
		ELEVATION / DEPTH OF	SEAL:	1151 5"
		TYPE OS SEAL: File	1 /	
				-
				-
		DEPTH TOP OF SAND PA	ACK:	11.0
		SUSVETION (SSSTILLTS)	or concess.	715
		ELEVATION / DEPTH TOP	POF SCREEN:	210
		-TYPE OF SCREEN:	PUC-40	
	1			-
		SLOT SIZE X LENGTH:	0.01" Y10'	_
	}		, , , , , , , , , , , , , , , , , , , ,	
		I.D. OF SCREEN:	1.25.	-
			6	
		TYPE OF SAND PACK	Medium Sand	
		THE OF SAME PAOR	Trace com som	-
				-
		- ELEVATION / DEPTHBOT	TTOM OF SCREEN:	1210
		- ELEVATION / DEPTH BO	TTOM OF SAND PACK:	1210
		TYPE OF BACKFILL BELO	OW OBSERVATION	
		WELL:	······	- , -
		ELEVATION / DEPTH OF	HOLE:	1210

							ВО	RING LO			ige _			
PRC	JEC.	T NAM T NUM S COM			Me	< r.		BORING DATE: GEOLOG		BER: Site 18 	2	Mi	00	Z
		RIG:			tirti	2000.		GEOLOG DRILLER	-	120				
$\overline{}$							RIAL DESC		·.	1. Brond	=			
Sample No.	-		Sample		<u> </u>		TIAL DESC	KIPTION .	ں إ		P10/1	FID Re	reding	(PPn
and Type or RQO	(Pt) or Run Ho.	(For RQD (%)	Sample Length	Change (Depth/Ft.) or Screened interval	Boti Density/ Convisions y or Rock Hardness	Colo	Meterial	Claseffication	\$ C \$.	Remarks	Parents and a second	Sampler BZ	Borehoder	Orther BZ**
	l					Zyu	Silty	Sund		moist	+-	\vdash		
	2					1			 	1	+	\vdash	-	
	3				·				†		+-	-		╀┑
	4							.			╃╼	 	<u> </u>	-
	S			,				-	- - 		+	\vdash		\vdash
	6								+-	Sotueto	+	Н		-
	7		_						-	to the to	+	Н		
	8						-		+	 	 	Н		
	q			ľ					+	- /	+	┝┥		
	lΟ								$\dagger \exists$		+	┝╌┪	\dashv	
	t^{C}					\mathbb{V}	V		†-1	1	+		-	
	12					,			1	<u> </u>	+1		\dashv	
											┿┪		_	\neg
				Ī					11				-	
													\dashv	
											1			
				ŗ		7					† †		- 	
									1		+		┪	\Box
											+			
				ſ					 				\dashv	
	寸			1					1		1	H	ㅓ	\sqcap
	<u> </u>					_				 				
	<u>†</u>			<u>†</u>			 		† †		1-1			П
									+		+-	1		

^{*}When rock coring, enter rock brokeness.

**Include monitor reeding in 8 foot intervals @ borehole. Increase reading frequency if elevated reponse reed.

**Drilling Area

**Background (ppm):

**Converted to Well: Yes **

**No Well I.D. #: **

**Well I.D. #: **

**Drive
BORING NO .: MWD-3

OVERBURDEN MONITORING WELL SHEET

PROJECT ZOUC	<u>G</u>	_LOCATION	1: Sitz 18	DRILLER ROA	À
PROJECT NO.		BORING	1: Site 18 MW-3D	METHOD: DPT	
ELEVATION			8-9-49	DRILLING HS	A
FIELD GEOLOGIST	R.Hill	_	-+	DEVELOPMENT: NA	
Tech					
			ELEVATION OF TOP OF S	URFACE CASING:	
	⊁ l∢-		ELEVATION OF TOP OF R	ISER PIPE:	
	/		STICK -UP TOP OF SURFA	ACE CASING:	
	' ┃	<u> </u>	STICK-UP RISER PIPE:		
	II II◀		I.D. OF SURFACE CASING	:8" Manhole	aver
	1 1		TYPE OF SURFACE CASI	NG;	
		1			
GROUND V			TYPE OF SURFACE SEAL	: Concrete	
ELEVATION				<u>'</u>	
LLE VALUE V				-11	
			RISER PIPE I.D.:	2	
		ł	TYPE OF RISER PIPE:	PVC. 8'8	utter Caseina
					_ 의
			BOREHOLE DIAMETER:		
•			TYPE OF SEAL: Grov	Te.	
		ĺ			
		!	ELEVATION (DEDT), OF		24.61
			ELEVATION / DEPTH OF S		∆1.01
			THE US SEAL. BEIN	voniye	 -
					
			DEPTH TOP OF SAND PA	CK.	<u>26.0</u>
			DEL TITLES OF CARDIA		<u> </u>
			ELEVATION / DEPTH TOP	OF SCREEN:	28.01
1					
			TYPE OF SCREEN:	PYC	
		}			
			SLOT SIZE X LENGTH:	-010 X 10	
				_ 12	
			I.D. OF SCREEN:	<u> </u>	
			TYPE OF SAND PACK:		
		j	20/30 Silica	Sard	
		İ			
				Wa	· -> C - C - C - C - C - C - C - C - C -
	%		-ELEVATION / DEPTHBOT		33.01
		- i	ELEVATION / DEPTH BOT		33.01
			TYPE OF BACKFILL BELC	JVV UBSERVATION	
			WELL.	HOLE:	
			ELEVATION / DEPTH OF	HULE.	

							BORING LO	<u>G</u>	Pa	ge_		of_	
		NAM		C	uc	_	BORING N	IUMB	ER: 18 W 420	لاغ			
		NUM F	BER: PANY:		<u> </u>		DATE:	_	ER: 18 MWG		_		
		RIG:	CANT.		Leben to	<u>کو،'د</u> په لم	GEOLOGI DRILLER:	ST: _					_
	T^{-}	Γ	Τ			MATE	RIAL DESCRIPTION		P.B. Ven		=		=
Sample No.	Depth (PL)	Blows /	Sample Recovery	Lithology	7	T	THAL DESCRIPTION	u		Phore	ID R	ading	(ppm)
and Type of RQD	or	RQD (%)	Sample Length	(DoptivFt.) Or Screened interval	Consistent	Color	Material Classification	\$ C \$	Remarks	1	Sampler BZ	Borehole**	Orline BZ**
	Ī					3~	Silty Sul		Myris-	†-			
	7	/						\Box		+			
	3	\angle								 			
	4	\leq											
	5								V				
	7	$\langle \cdot \rangle$	\longrightarrow	.				<u></u>					\Box
-	8	\leftarrow		ŀ			Souly Cly	4	Saluntel	Ш		_	
-	9			ļ	·							_	_
$\neg \dagger$	[0		-	}		╁	Silty Sand	-		\vdash	\dashv	\dashv	ᅬ
-	11			ŀ		++	St / Tr. Sand	-				\dashv	ᅱ
	12			ŀ		V	()	╌┼╴				╌┤	\dashv
				Ī				十		╁┤	-	┪	┪
												寸	┪
	_												
_													
	}							_					
		4		- }		_		\perp				_	_
_		4		-				\dashv		\vdash			
				}				_	_	-			_
_		$\overline{}$		-		-						\dashv	
_	_+	$\overline{}$		 				-		}_			\dashv
_				-				-+		-	-		\dashv
_			\dashv	-				-		-	-		\dashv
	ie monit		rock brok in 6 foat		borehole.	incress	e reading frequency if elevated repone	e reed.	Drilli Background	ng A	rea	<i>#</i>	
	-	to Wel	l: '	Yes _	-	-	10 Weii 1.D). #: _	youp 3				

ţ

DRIL	JECT LING LING	NUME COMP RIG:	BER: PANY:		istom	8-9-99 Rod.	_		<u>-</u>				
Sample No.	Depth (FL)	Blows /	Sample Recovery	Lithology Change	N Soil	ATE	RIAL DESCRIPTION	U			ID Rea	eding	(ррп
and Type or RQO	or Run No.	RQO (%)	/ Sample Length	(Depth/Ft.) or Screened Interval	Density/ Consistenc y or Rock Hardness	Color	Material Classification	s c s ·	Remarks	Sample	Sampler BZ	Borshole**	Driller BZ
	ત્રા	\angle					Dark greenish gray silty Clay, Muck.						
	श्रव	$\langle \cdot \rangle$					silty Clay, Muck.			_			
	a 3	3/6					/			<u> </u>	Н	-	ļ
	24						, ,	-		ļ	-		<u> </u>
	27						same as above				\vdash		_
	26	497					Jame 43 and		•				╁
	27. 28	1/0				<u> </u>	,						
	20.	9 5			-								
	30 30	%		4	<u>-</u>		Durk Gray silty clay						
	31	%		V			Durk Gray silty clay W/f. soul lens tr. of shell frag.						
	32	96					of shell frag-						
	30	%			_					<u> </u>			<u> </u>
	3 4	2/2						<u> </u>	will sot	<u> </u>	<u> </u>	ļ 1	<u> </u>
	35					ļ		<u> </u>	well screen	<u>. </u>	-		
	36				· -			ļ	from 28-33	-	├ -		_
	37			_ ~		<u> </u>		<u> </u>		├	-	-	╁
	38			B.T.				 .		\vdash		 _	+
		/								_	+	ļ	
						-	,	-	•		-	 	
			_		<u> </u>	1.	 					†	+
					<u> </u>					+	 	 	T
	-		_						•		1	†-	T
												<u> </u>	\top
	de mon		er rock bro		@ borehole	. Incre	ase reading frequency if elevated repor	se rea	d. Drillii Background				<u>-</u>

SOUTHNAVFAC

LOG OF BORING

Page of

PF	OJECT	NO:				_			PROJECT NAME: SIE IR	
PF	OJECT	LOCA	OIT	ا: د٨	, c	UA Q L	<u> </u>	210	PONE G DATE DRILLED: 3/8/99	
1 -	ILLIN						_		SURFACE ELEVATION: Feet	——'
	ILLIN(e 12	BORING DIAMETER: Inches /o	
DF	ILLIN(RIG:	BE	57	140	BILL			GEOLOGIST: COLO 6000E	—-{:
		نے ا		PID	(DDm)		9	ے ا		l,
ОЕРТН	SAMPLE	BLOWS/FT	Sample	B. Zone	Borehole	Orm B. Z.	GRAPHIC LOG	USCS/RGD	GEDLOGIC DESCRIPTION Density/Consistency, Hardness, Color WELL DIAGRAM	'
5	60 GC		NBS SBM	061,		0-	03 60°		Fill Medical: Surface to 3' bis che 2' Sand, light brown, time grained, into mixed with grand probbles and Cobbbes, day 2' to 3' Sand, block Some Silt, into mixed with growns and califler Clayery Sand, block Silty, went at 5'ble Sitty Sanly Clog, Port Cray, Soft, Plostic. (Lay, Park Gray, Sticky wood Motter, Soft, plostic, went	
		\$ et								

							<u>BORIN</u>	<u>G LOG</u>	2	F	age <u>·</u>		of <u>≺</u>	<u></u>	1	
⊋" ∩	JECT	NAME	Ε;	<u> (</u> '/	NC_			ORING N	UME	BER:	Page _	<u> </u>	9-	<u>BO</u> 1	. 4	Jan 186
Z Z II	JECT		BER: Pany:		761/1			ATE: SEOLOGIS	ST	6,5184	19			_	1	
		RIG:	FANT.	Ski	DENA D HOA	HOE	2 (8M) D	RILLER:	٠٠	PETER	MIL	U	572	2	<u> </u>	D 15
	-						RIAL DESCRIPTION	ON				_		(ppm)		
Sample No. and Type or RQD	Depth (FL) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Consistenc	Color	Material Classific	cation	0 8 8 •	Remarks	Semple	Sempler BZ	Borehole	Oriller BZ"	the state	Che h
1/	1						Sand fi	//		-	-				2	D
T)	2			_		-		' 							Ŋ	14
							CONCRETE	REFIL	(A)	(a) 2'		 			}	
	_			1			-	10, 0					<u>├</u>		L	
				1					-	_	-				•	
				1			_									,
•																
	_		1											\square		
					_											
- -																
										· .						
												<u> </u>	<u>_</u>			
												<u> </u>	L.			
	ļ			<u> </u>									<u> </u>	Щ		
										_			L			
									<u> </u>				<u> </u>			
	<u> </u>											ļ	<u>L</u>			
							_			<u> </u>		1	_			
							_					_	<u> </u>			
				1								1_	<u> -</u>			
				1								1.	<u> </u>			
				1		<u> </u>	_			_		_	\downarrow	Щ		
⊶ Indi	ude moi narks:	nîtor readi		ot intervals	@ borehole		ise reading frequency if e			_ Backgro	rilling A und (pp	\rea om):	e L	7 2, C)	
Con	verte	d to We	ell:	Yes			No 🗴	Well I.0	D. #:	·	_ _					

Page $\underline{1}$ of $\underline{2}$

		NAME		C	NC_		BORING N	- UMI	BER: CNC 19-1	30	2		
		NUM			-		DATE:		4-27-99	/_	4 4		
			PANY:		1DEWA			5 I.	6.51500	<u>' ^ .</u>	<u> 41</u>	(KAI	<u>nd</u> ev
DRIL	LING	RIG:		F250	w].	UPT	Geopral 5400 DRILLER:		MABK CO	EX	NAV	<u> </u>	
_					۱, ۷	MATE	RIAL DESCRIPTION			PID/FI	D Res	ding (ppm)
Sample No. and Type or RQD	Depth (F1.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/FL) or Screened Interval	Soil Density/ Consistenc y or Rock Hardness	Color	Material Classification	U S C S *	Remarks	Sample	Sampler BZ	Borehole™	Oriller BZ**
	1				hoose	in	moi3+		- * · · · · · · · · · · · · · · · · · ·	5			
	2		1/		Logsk	ı, /	Silty Sand			5			
	3		}		1,	γ	Soft			5			
	4		10090		(1	DC.				50 ₇	c.		
	5		$\int_{\mathbb{R}^{n}}$	ALTAN .	/1	ƙng	Sitt. muist		В	B	4		
F	6				. 11	u'	wet		195P02-0406	50	+		
Ľ	7		}	. \						Z	<u>/</u>		
	8		1002				Saturated			X	<i>†</i>		
	9						(r (r			90	4		
	Ю						c+ +			MA	1		_
	11		<u> </u>		_		ct 4			Me	1		
	12	/,	25%				ş. G			7	L		
	<u>/3</u>		<u> </u>				(1 4			<u> </u>	abla		
	14	\angle	1				11 4			<u> </u>			
	15		1				es u			L		<u> </u>	
Ĺ	16		150	6			a u	<u> </u>		igspace			
	17		<u> </u>				tr cr	_		_	Ľ		
	18		<u>{</u>				C1 17			<u> </u>	<u>/_</u>	ļ	
	19						G (1						
	20		125%				Le re			\coprod		<u> </u>	
	2/		<u>) </u>		_		<u>(</u>			Ц			Ц
	22						×1					_	
	23				· .		<i>(</i>) ()			V			Ш
	24		10%				10 02						
	25			التحويذ			· "						
			er rock bro						Ps. 100				
	ide mon arks:	itor readin	ng in 8 foo	t intervals (a borehole LABS	Increa	se reading frequency if elevated report Samp 16	se rea	ad. Drillii _ Background				<u>-</u> -
Con	verted	to We	 ell:	Yes		,	No Well I.I	D. #:					

Page $\frac{2}{2}$ of $\frac{2}{2}$

		NAME		_		Ť	BORING N	UME	BER: CNC19- 4-27	<u> </u>	<u> </u>	<u>L</u>	
		NUME				_	DATE:	nπ. '	4-27				
		COM	PANY:				GEOLOGI	51: -					_
DKIL	LING	RIG:			ı		DRILLER:					_	_
Sample	Depth	Blows /	Sample	Lithology	N	IATE	RIAL DESCRIPTION	U		PID/FI	D Rea	ding ((ppm)
No. and Type or RQD	(Fl.) or Run No.	6" or RQD (%)	Recovery / Sample Length	Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistenc y or Rock Hardness	Color	Material Classification	s c s	Remarks	Sample	Sampler BZ	Borehole**	Ortiler BZ**
	26)	7,	1		Gardy/saturation						
	27		ζ				Gardy Clay mucky			<u> </u>	Z		
	28		2253			·	Sardy Clay Mucky					_	
	29		E		@2	6			/	1	\vdash		\dashv
	30									┼			
										 			H
- 1		-											Н
<u> </u>										+			
								,					
	-	\angle							,				
		4								 			
										 	<u> </u>		-
									*	+	┼		\vdash
	,									+-	╁	_	
	<u> </u>									1	 		
							· · · · · · · · · · · · · · · · · · ·						
		Ζ,											
	ı							<u> </u>		 -	<u> </u>	<u> </u>	-
		\angle						ļ			\perp	 	<u> </u>
		/ 								-	+	 	╁
ļ _		-			-					+-	+	├-	+
<u> </u>		$\overline{}$								+	+	 	+
·· Inclu					ĝ borehole.	Increa	se reading frequency if elevated repon	se rea	d. Drilli Backgroun	ing A d (pr	rea om):	<u> </u>	<u>-</u> 5

MAINTED #

Page <u>1</u> of <u>1</u>

		NAME			CNC	ح ح	BORING N DATE: GEOLOGIS	IUMI		<u>B</u>	03	<u>3 </u>	_
			DEK. PANY:	 ,	Tides	· at	GEOLOGIS	ST.	1 2 6 6 4	11 8	ورره	ر د. و	06
		RIG:		F·z	50	viq h		J 1 .	MARK COLE			120	<u> </u>
			1	<u>, , , , , , , , , , , , , , , , , , , </u>			ERIAL DESCRIPTION	T				ding (<u> </u>
Sample No. and Type or RQD	(Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soli Density/ Consistenc y or Rock			υ	Remarks	Sample	Sampler BZ		Driller BZ**
	0		<u> </u>		Hardness	914			·	<i>a</i>	۲.		4
<u> </u>	1	-	} -	,	/	_	dry if grave !	<u> </u>	7.	10			
ļ	2		100	1). F.	M/h/h	194	+ brown	ļ		10			
	3)			3-	4 gray clay			5			
	4)	du.	rk gra	,/	silty sand			5			
	5		>		arkar	ay/	some jery dark		MSFB03-0507	50	+		
	6		3	▼"	1	6"	luyer of clay/dense			50			
	4		100	% 0	can 1	,	Saturated			W	2		
	8		100	/° y	7		7-700-02,00	<u> </u>					
	4		-			-							
	10				_					_			
	70							t^-					
							<u> </u>	-				-	H
			_					-					\forall
					<u> </u>			\vdash		-			\vdash
								<u> </u>		-			
-					_			 					\vdash
\dashv	-					-			<u> </u>	<u> </u>			
				ł						├-			
				}				├-		├	-		H
				-				 -		╁—	 		H
	\longrightarrow			}		1		_		├-	\vdash	_	$\vdash \vdash$
				}				 		├-	╀	_	$\vdash \vdash$
								\vdash		-	⊣	-	\dashv
				-				 		-	 -	 	\square
				-							 	_	Щ
								Ь.				<u>L</u>	Ш
** Includ	le monit		rock brok j in 6 foot		g borehole.	Increa	se reading frequency if elevated repons	se rea					
Rema	_								Background	(PP	nn):	<u>ټ</u>	<u></u>
Conv	erted	to Well	l:	Yes			No Well I.[). #:					

							В	ORIN	NG LOG	}	Pag	e _	<u>L</u> ,	of Z	,
F,	JECT	NAME	≣:	Cl	1C- Z	2 od					BER: CNC-/	91	30	54	<u>'</u>
F.,	JECT	NUM	BER:		_				DATE:		4-27	, -	- <u>) -</u>	/	_
		COMI	PANY:		DEUM				GEOLOGIS	5T:	4300	- 4			
DKIL	LING	KIG.					<i><u> </u></i>	CDID	ı		M. COLON	PIO/FI	_	i	<u> </u>
Sample		Blows /	Sample	Lithology		I	KIAL DES	CRIP	TON	U		FIGE	U Kea	· I	(pom)
No. and Type or RQD	No,	6" or RQD (%)	Recovery / Sample Length	Change (Depth/Ft.) or Screened interval	Soll Density/ Consistenc y or Rock Hardness	Color	Mate	rial Class	ification	s c s ·	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
-	0			7	Mat.	Br.	Dru.	Sou	Mand			5			\vdash
	2	$\overline{}$			L-0831	9/14	Sax	2010 Ay	spard slaw			5			
	3] {	Lord	High	<i>l</i> n	7 -				15			
	4	_	10%	<u> </u>			Si/:	ky 5	Sonoch		19SFBØ4-0304	1-			
	5				V	KQ	ray Si	14y,	Somech			10			
<u> </u>	6	-			,				_			1/4			\sqcup
<u> </u>	\$	/	in	5		-	Sutu	rate				1	\vdash		$\vdash \vdash$
<u>.</u>	0		100	$V \mid$								1			Н
Eq.													-		
-															
		\angle													
<u> </u>		\angle					_								
	<u> </u>												<u> </u>		H
-	·											<u> </u>	 		\vdash
													-		
				i					-				†		
		/										_	<u> </u>		
ļ		/										_	_		\perp
												╀	┼_	_	
\vdash		-										+	┼-	-	
	<u></u>	/								ļ		+	╁┈		
		oring, ente								1	. 5	- = ^	<u> </u>		
	ide mor arks:	itor readir	ng in 6 foo	t intervals (@ borehole.	Increa	ase reading fr	equency i	f elevated repon:	se rea	nd. Drilli Background	ng A d (pp	vгеа om):	5	
Conv	/ertec	to We	 :II:	Yes			No V		Well I.C). #:			-		

								В)R	INC	LOG	}		,	P	age _	<u>1</u>	of <u></u>	7
		NAME NUMI		CN	C- '	Za	Vc	G		ВС	DRING N	_	BER:	<u>/</u>	951	75	_		
			PANY:	TI)EWAT	Eβ		. —			EOLOGIS	ST:		7/36	20				—
DRIL	LING	RIG:		F	-250	w	5	40C)	DF	RILLER:		<u> </u>		octa	100			
					N	/ATE	RIA	L DES	SCR	IPTIC	N					PID/	ID Re	ading	(ppm)
Sample No. and Type or RQD	(FL) or	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/FL) or Screened Interval	Consistenc Y	Color		Mate	rial Cl	lassifica	ition	₩ S C S •		Rema	arks	Sample	Sampler BZ	Borehole**	Oriller BZ**
	1		$\overline{}$		Mat.	T Dit	102	Den	1,	- VIV	el Till		·			5	1	_	
	2		7		40030	4.3	Ow	2	//	ITW	11	\Box				5	 	_	\dashv
	2		>	1	Van.	Y.Gu	1	54	/	lan	80000	<u> </u>				5	╁		\dashv
	21	-	100%	·	NON A	11	7<	C:14	10	30 /	3000	_				5	+	-	\dashv
	7	<i></i>	100%			11		11	/_	11	<u></u>	<u> </u>	190	EDAZ	-048	26		-	+
	1.)			1.	21	Son	- /	04			7/31	בעט	DIW	4	17	_	\dashv
	2	\leftarrow	/ –	1	•	9	4	SiH		Zel	Jeter	Z				7	4_		
<u> </u>	0		100%			-	-	 0//	7 -	J	1 Odlar	720	_			₩	╁	-	
	0_	\leftarrow	1			\vdash	-					_				-	+	-	
		\leftarrow	<u> </u>									<u> </u>				<u> </u>	+	-	
												_				+	╫	-	Н
	_	\leftarrow										_				┥	+	-	-
		-										_				+	╁┈	<u> </u>	Н
		$\overline{}$										<u> </u>					╁	-	\vdash
_		/_		,								<u> </u>			_	+	+-	├-	
┝		\leftarrow	<u> </u>									<u> </u>				-	┼	├-	Н
<u> </u>							_					<u> </u>					┿-	<u> </u>	
		/-										<u> </u>					_	 	Н
		/_								-		<u> </u>					 	├-	
	<u>_</u>	/_			_	-			_			_				_	_	ļ	Щ
		/										<u> </u>					ļ	↓_	Щ
		/_										_					1	<u> </u>	
		/_										_					\perp	-	Ш
	<u> </u>											L					\perp		Ш
								·											Ш
•• Inclu	ide mon	itor readir	er rock bro ng in 6 foo		@ borehole.	Increa	ase re	ading fre	equen	cy if ele	vated repons	se rea	ıd.	C-		rilling /			
ĸem	arks:												•	Ra	ckgrou	nua (þ	pm):	· 	
Conv	ertec	to We	il:	Yes			Νo	V			Well I.D), #:			-				

							BORING	LOG	<u>;</u>	Pag	e <u>-</u>	<u>-</u> (of	<u>1</u>
	ĕĔCΤ	NAME NUME	BER:	_			DAT	Γ E :		BER: CNC19-1 4-28-99		6		_
_		COM		7/	DEWAY			OLOGIS	iT:	ALEXAN)	(D			_
DRIL	LING	RIG:		-25			- 1	ILLER:		M. COLEMAN		_		_
Sample No. and Type or RQD	(FL) or	Blows / 6" or RQO (%)	Sample Recovery / Sample Langth	Lithology Change (Depth/Ft.) or Screened Interval	Soll Density/ Consistenc y or Rock	Color	Material Classificati	on	USCS	Remarks	PIO/FII	Sampler BZ	Borehole 1	Driller BZ** 34
	7		>	*	lovce	D PM	drykomegrav	10.4		-	3	\dashv	-	\dashv
-	7	$\overline{}$	(1000		sitt	.us		- A	3		\dashv	\dashv
	3	$\overline{}$	37		ndin	i) (ni				1/2	3	 		\neg
	4	$\overline{}$					3-4' moist	L S洲			20			\neg
X	5		{				4-7 sitty clau	1		195FBØ4-050	4 4	. 2	0	
	6			ا مد ا	red.		wet, dark	gray			u	10		
X	7		/	-	dense		2000	vet !		19GFBB6-08			_	
Ľ	8	/		EUB			Satureted				_\		_	
	9													Ц
	10	\angle												
	11						-				_			
	12_	/												
	13				 						_			Ц
	14	/_												Ц
	15													Ш
			<u> </u>	ļ										
		\angle												
<u></u>			<u> </u>								_			Ц
														Ц
<u> </u>														
<u></u>	ļ	/_									ļ. <u>.</u>		_	Ц
						Ш					_			Ц
		/									_			Ц
-												<u></u>		Ц
			er rock bro ng in 6 too		@ borehole.	Increa	se reading frequency if eleva	ated repons	e rea					
Rem	arks:	_								Background			3	
Conv	verted	to We	ell:	Yes			No	Well I.D). #:					

Page <u></u> of <u></u>

							BORI	NG LO	3	Pag	e <u>-</u>	<u>_</u>	of -	
PRO	JECT	NAME NUME	BER:	<u>CNC</u>	- 70	Œ		BORING N	- IUMI	BER: CNC/9- 4-28-99	BA	01	7	_
DRIL	LING	COM			TDEWA	974	ንሊ		ST:	ALEXANDI	<u>72</u>			
DRIL	LING	RIG:		£ -2	50	47	5400	_DRILLER:		M. COLEMA	<u> </u>	·-		
					M	IATE	RIAL DESCRI	TION			PID/FI	D Res	dlng	(ppm)
Sample No. and Type or RQD	(Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length		Soil Density/ Consistenc y or Rock Hardness	Color		ssification	_ w c w ⋅	Remarks	Sample	Sempler BZ	Borehole**	Driller B2**
	D						asphalt						_	
<u> </u>	1		₹]				Gill (0	-2)	ļ	~	3_		_	
	2		<u> </u>	_			50% GI	<u> </u>		<i>k</i>	3			
	3		X4.	[11.50		50% 1+	. 9194		N	3			
	4		<u> </u>		J			44		a	3			
X	5		3_							19SFBØ7-Ø5Ø	20	29		
	6		7		akgi	اميد	clay	wet/n	red	ivmsoft	کر	3		
	7		<u>Y</u> 41		<i>J</i> '		6-8 5	nhratec		19878107-1050 ivm soct	4/	i i		
	8		2_	7	9504	10	riy Gand							
	7			EOB										
	10				_									Щ
	. /													
	12													Ц
		/												
<u> </u>		/			·				<u> </u>					
									<u> </u>					
									<u> </u>				_	
							411 - 111		<u> </u>	<u></u>				
		/_,												Щ
											<u> </u>			
									<u> </u>					
								·						
* When	rock co	nina ente	er rock bro	keness.										

** Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read.

Yes

Remarks:

Converted to Well:

Drilling Area
Background (ppm):

Well I.D. #:

							BOR	ING LO	<u> </u>	Pag	ge <u>-</u>	1_	of _	<u>1</u>	
\	JECT	NAME NUME	BER:				WE G	BORING N	UMI	Pag BER: <i>CNC19</i> 4-29-9 5180-0	-	B		2	3
DRIL	LING	COM	PANY:	71	DEK/AT	<i>0</i> 2_		GEOLOGIS	ST.	51500					
DRIL	LING	RIG:5	KID LO	MIRT	290	2:1	134000	DRILLER:		AT DESIGN	Qa.		<u> </u>	<u> 2. j</u>	MILLER
			_		M	ATE	RIAL DESCRI	IPTION			PID/FI	D Rea	ding	(ppm)	•
Sample No. and Type or RQD	Depth (FL) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change {Depth/Ft.) or Screened Interval	Soil Density/ Consistenc y or Rock Hardness	Color	Material Cla	assification	₩ C % +	Remarks	Sample	Sampler BZ	Borehole**	Driller B.Z**	
	1					Tiera	SILTYSAN	D SGRAVER		DRY	4				
	2				•					DRY	4				
	3		2			in	GRAVEL	CLAY		DRY	4				
	4		Ma			11	SHAVEL SILTY ORG	CLAY		MOIST	5				
	5					Η		ODOR	\supset	11	30	+			
	6		1.5	▼		li	7			11	0	7			
	7						f t	1/ .		SAT. /	W	7			
	8						11		_	11 /	00	7	_)
<i>~</i>	9		30				l)	<i>[</i> 1	<u> </u>	"	100	1			
, _r ,	T			EOB								_			
															 .
]
											<u> </u>			_	
	<u> </u>					L.			<u> </u>		╽.	Ŀ	_		
	<u> </u>					_			ļ	<u> </u>	_	<u> </u>	_		
_				<u> </u>	 	_			<u> </u>		<u> </u>	<u> </u>	_	<u> </u>	ļ
<u> </u>			<u> </u>						_		-	ļ	<u> </u>	_	
			ļ			<u> </u>			<u> -</u>		╀-	<u> </u>	_	 	<u> </u>
	_		<u> </u>	-		-			┼		+-	├-	<u> </u>	├-	ł
<u> </u>		//	<u> </u>	-					+-			_		┼	{
<u> </u>	-			_					┼─		+	+-	-	┼	-
				-		_			+-	 	+	-	-	+-	Ì
		//		-		<u> </u>			 - -		+	-	\vdash	+-	1
a.				-		-	-		-		+		+	+-	1
When	n rock c	oring, ent	er rock bro	keness.	_				<u> </u>			<u> </u>	<u> </u>	<u>↓</u>	J

"Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read.

Yes

Remarks:

Converted to Well:

Drilling Area Background (ppm):

Well I.D. #;

		NAMI					BORING N	UMI		-	P	40	2 C
		NUMI COMI					DATE: GEOLOGIS	:T·	4-29.99				
		RIG:	ANT.	SK1	D LOA	DEF		J1.	P. MILLER				_
					N	1ATE	RIAL DESCRIPTION		,	PID/FI	D Re	eding (ppm)
Sample No. and Type or RQD	(Ft.) or	Blows / 6" or RQD (%)	Sample Recovery / Sample Length		Soil Denaity/ Conaiatenc y or Rock Hardness	Color	Material Classification	U S C S .	Remarks	Sample	Sampler BZ	Borehole**	Dritter BZ**
-	1						SILTY SAND, GRAVET		DKY	7			
	2		,				SILTY SAND, GRAVET		DKY	7			
	3		2.				SILTY, ORG CLAY		MOIST	10			
	4			l					WET	10			
	5						DIEST ODER		weg	5 0	1		
	6		2	*			11 1		WET	7 6	*		
	7						a 11		S.ATMAND	50	4		
	8						W/SAND"			50	<u></u>		
	9		3		-		11 '1			524			
				EOB									
							F')						
		\angle											
								İ					
		\angle											
			7										
									•				
	de mon		er rock bro		borehole.	Increa	ise reading frequency if elevated repons	se rea	d. Drillir Background				<u> </u>

Well I.D. #:

Converted to Well:

Yes

							BORING L	<u>.OG</u>		Page _	4	of .	L	
PRO	JECT	NAME	Ξ :				BORIN	NG NUM	BER: CNC1 4-29-	9-	B1	4	•	
		NUM					DATE	COLET	A- 29-	99			_	
		COMI	PANT:	SKI	D 61	A72	DRILL		SISCO PETER	MIL			_	
			<u></u>				RIAL DESCRIPTION						(ppm)
Sample No. and Type or RQD	(Ft.)	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistence y or Rock Hardness	Color	Material Classification	u s c s	Remarks	Sample	Sampler BZ	Borehole**	Oriller BZ**	
	1				505+	4.P	r. Silty Sand	Ø		7		_		
	2				7	11	111			7	<u></u>	✝		
	3		3	i 		11	11 11 Selw gry	wd. tr.	rlay	7	1	<u> </u>		
	4		M		Mel. Stiff	GIN	" "Sem gra y Silty Org. C	lav		10	,			
	5					11	11 110 1	, /-		15	7			Diesel Eder
_	6		2			11	11 11 1	/		/5	1			
	7					10	4 4			7	2			
	8					11	Gravel		Wet	7	<u>'</u>			
	9		2			11	Silty DM. C.	lay	Seturat	ed 15	*	<u> </u>		
· Maryer	10					11	7 1	/			<u>Ł</u>	<u> </u>		
	11	/				11				_/	_	<u> </u>	_	
	12	/	2		· · ·	11			5.7.	_/_	1	_		
				EOB.						_	$oldsymbol{\perp}$	<u> </u>	_	
<u> </u>		/_									\perp	_	-	
		/				_				\-	┼	┼	<u> </u>	
<u> </u>		/			ı — —				ļ <u>.</u>		\downarrow	┼	-	
		/	 						<u> </u>		\dotplus	┼-		
		/									┿	┼-	_	
<u> </u>		/									╀	 -	-	ļ
<u> </u>						_					┿	+	┼	
-	ļ	/- /		1		-			 	-	+	┼	├-	
├—				!		-			<u> </u>	-	+	┼-	_	
_			-				 				┼-	╁╾	╀	
<u> </u>			 						 		╀	╁╌	┼	
	rock o	oring, ente	r rock bro	keness.		<u></u>			<u>L</u>					J
Rem	_{de mon} arks:	itor readir	ng in 6 foo	t intervals	@ borehole	. Incre	ase reading frequency if elevated		Backgr	Drilling / ound (p			7]
Conv	ertec	to We	ell:	Yes			No X	ell I.D. #						-

Page ___ of ___/

	PRO	JECT	NAMI NUMI		<u>&1</u>	to 19	7	BORING N DATE: GEOLOGIS		BER: CNC 19	- <i>B</i>	<u>'</u>	<u>L</u>		
			i COMI i RIG:	PANT.		desista		DRILLER:	51.	Peter miles		—			
			10.		<u> </u>	profe	1ATE	RIAL DESCRIPTION		peren mon	PID/F	ID Re	ading	(ppm)	ı
	Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Semple Recovery / Sample Length	Lithology Chenge (Depth/Ft.) or Screened (Interval	Soil Density/ Consistenc y	Color	Material Classification	U % C % •	Remarks	Sample	Sampler BZ	Borehole**	Driller 82**	
					0.2			assipations 0-0.	,2						
0 🖣 .	-5		/	2.1/3	/ /		th	Sand sitty, mel		I mont	90	0		Ш	
		3	/		3	ļ,	20016	Comstad store 0.2-0.4	?	norst	<u> </u>			\vdash	
. 13	Dr. 19	4FB	11040	201	/		W.	10,9-310 Set ; Chapy >=	dy	first oder	4	0	_	\vdash	sa
U4.	1-11	6		1.8/2	1		1 (Para, why for		wet	6	0	\vdash	Н	L
		<i>B</i>				7	in			7401		Ť	_	H	
ሰ ብ	1 0			2.7/3	1		4	Bank, shoy, I dayy		saturated	0				
ν ₁		9				ادمر	944	,		vislan, fr	2	11			
	<u> </u>		/		-			TD 9'		· ·	-	_	<u> </u>	Ц	
					-								\vdash	\vdash	
					1				-		+			\vdash	
	-	<u> </u>			1				\vdash		 			H	
		,												Ш	
	<u> </u>		4		_		_		<u> </u>			L		\square	
		<u> </u> 		1			-		 		<u> </u>	_	_	\vdash	
	<u> </u>	-		_	-		-		┼_		 	<u> </u>	_	oxdot	
		-		 	1								_	orall	
					_						†			\forall	
										,	$oxed{-}$		Ĺ	$oxed{\Box}$	
	1		//			1 .					1			1 1	

Drilling Area
Background (ppm):

^{*} When rock coring, enter rock brokeness.

^{**} Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. Remarks:

BO	DИ	114	^ I		
BU	ΚII	N	3	$oldsymbol{-} oldsymbol{\cup}$	U

Page <u>1</u> of <u>1</u>

Background (ppm):

		NAM		<u></u>	10 m	<u> 10 (</u>		UMI	BER: CNC19 B	12			
		NUM		Tid	24		DATE: GEOLOGIS	2T·	911/99				
		RIG:	-ANT.	_			DRILLER:	JI.	B DH P M				_
DIVIL	LIIVO	1110.		700	pube				<u> </u>	_		_	=
Sample No. and Type or RQD	(FL) or	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	(Depth/Ft.) or Screened Interval	Soil Density/ Consistenc		RIAL DESCRIPTION Material Classification	U S C S *	Remarks	PIO/FI ejdiuss		Borehole**	Driller BZ**
				0.4'	soft	hall On	Typiol; ilt, web		man a de	0			
			21/	1.5	love		Topsort; net, with	Fes	towns roll frage	9/4	00		o
_	2		E11/3		Anna	M	all down		1 -				Ľ
B120	3 304	$\overline{}$	- 11	1	MOSO FX	guy	suc, ough	 	nost	10/	γ—		\vdash
			3.0/3	4.6'_				<u> </u>	- 44-	 _			\vdash
<u> </u>		/- /						-	wet	0			
<u> </u>	6	/_	<u> </u>	ļ	loose	Mary Mary	Sand, f. gran justy	<u> </u>		10	0		0
L						0 0	w/ stell from	_	wet	<u> </u>			
`			3.0/3	1			٠ //	<u> </u>		0	0		0
	9	/-									_		
							704'						
													Г
													Γ
								1			 	_	厂
								-		1			┢
-	-			1		 		 -		+	†-	 	\vdash
	- ,					\vdash		╁─		<u> </u>		┢	H
			<u> </u>			┢	<u></u>	╫		1		┢	╁╴
			-	1				┿		+		┢	+
-				-		-		+		+	-	 	+
			-	1		+-		┿	 	+		├-	\vdash
<u> </u>			-	-				<u> </u>		+	<u> </u>	<u> </u>	<u> </u>
<u> </u>		/_		_		_		—		-	<u> </u>	<u> </u>	igspace
								<u> </u>		\perp	_	L	\perp
ţ.		<u>//</u>										L	
Maryon ,					~			<u>L</u>					
										1			Γ
		oring, ent			♠ horeholo	laces	ase reading frequency if elevated repor	PO 101	rd Drill	ing A	rea		

Remarks:

	DRIL	LING	RIG:			egyyl	<u>o</u>	DRILLER:	,	<i>P</i> M				
ľ		Dank	Blows /	Samala.	Lithology	<u> </u>	IATE	RIAL DESCRIPTION	┨		PID/FI	D Rea	ding	(pp
l	Sample No. and Type or RQD	(FL) or Run No.	6" or RQD (%)	Sample Recovery / Sample Length		Soil Density/ Consistenc y or Rock Hardness	Color	Material Classification	U S C S ·	Remarks	Sample	Sampler BZ	Borehole**	Ordilar R7**
ľ					122_		iso	aspent	 	assault if she	0/	6)		7
				151	,		ter	Dill, study	1	st mount	 	/		ľ
		3		17/3					T		12			-
	195		0405	2.4/		lone	Ħ	Sord to sit, orange		V. moist	0/	561)	(
				/3	4.4	laose	4444	Sand, charge		wet	35			
		Ġ.					0	petrolan ster/ofor		strong had odos	300	10	260	
						fin	الممر	Silt. Ouven		+ string v/go	trolo	en		
		***	\angle	3.0/2	,		gray							L
		9		,,		_	Ľ					L		L
			\angle			•		TD 9'				_		L
			/-						_					L
							<u> </u>		<u> </u>		_	L		L
			\angle						_			_		L
			\angle						\bot		_	_		L
			/	ļ ——			ļ		<u> </u>		_	<u> </u>		ļ
									4		\perp	├-		ļ
	-		/						+		╀	\vdash	_	ļ
			/						-			\vdash	_	1
						_			-		-	_		1
			/						_		_	├-	<u> </u>	+
			/						+-	-	-	├-	_	+
			/_				-		+		\vdash	\vdash		+
			/			<u></u>			+		_	_	_	+
			/			_	ļ		+		ļ <u>.</u>	 -	-	1
	• • • •	L	oring, ente									L		

F.		NAME NUME		<u> </u>	124	ne	G BORING DATE:	NUM	BER: CNC 19BI	4			
		COM			124		GEOLOG	IST:	5/2/919 BDH				
		RIG:	,	Pu	en al	<u>ر ہ</u>	DRILLER:		PM				
					N	ATE	RIAL DESCRIPTION	\top		PID/FI	D Rea	eding	(ppm)
Sample No. and Type or RQD	(FL) or	Blows / 5" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil			U S C S ·	Remarks	Sample	Sampler BZ	Borehole**	Driller 82**
				0.5		mol	lile sonly wilets		Guna Se	0			
			2.6	1.8	nad-e	th	Sund into Imported		fill moist	9/			O
	3		13		Gre be 4	on d	Sad john Jazan sle	afro	19FB140203	11			·
						1 ()			sh, find odor	10			0
:			1.9/2	44_	enor	X	Sond : line and		wet slight	70			
	6		//			0 0			frel oder				
									wet, fuelosos	120			
			3.0/2	1			a & home 2" days	20	e st morst	130		<u> </u>	0
	9						TO 9'	0-		60		<u> </u>	
]									
						ļ				_		_	<u> </u>
				1								<u> </u>	_
	<u> </u>								_	_			<u> </u>
<u></u>										<u> </u>		_	<u> </u>
j.				<u> </u>	 			_ _		<u> </u>			<u> </u>
										<u> </u>		<u> </u>	<u> </u>
							1			<u> </u>		<u> </u>	<u> </u>
		/		<u> </u>		-	1	 		ļ		<u> </u>	igspace
	<u> </u>	/	<u> </u>	_	_	<u> </u>	_			<u> </u>	<u> </u>		<u> </u>
	<u> </u>			_		<u> </u>		_		<u> </u>	<u> </u>	ļ	
				_	_				<u> </u>	igspace	<u> </u>	_	<u> </u>
			1	4	_			<u> </u>	<u> </u>	<u> </u>	_	_	<u>_</u>
_	<u> </u>			4	_		_			_		<u> </u>	ot
*****	L_												\perp
** Incl	uđe mo				@ borehol	e. Incre	ease reading frequency if elevated rep	onse re					
Rem	arks:								Background	i (pp	m):		
Con	verte	to We	ell:	Yes		_	No Well	1.D.#	:				

			NAM		ON	E 30	20	G BORING N	NUM	BER: CNC 19 BIS	-			
			NUM		012	4		DATE:		5/2/99				_
				PANY:	<u></u>	ident	ج	GEOLOGI	ST:	ВРН				
C	RIL	LING	RIG:			mor		DRILLER:				_		
	ample		Blows /	Sample	Lithology	V N	IATE	RIAL DESCRIPTION	U		PID/F	ID Rea	ding	(PI
 	No. and ype or RQD	(FL) or Run No.	6" or RQD (%)	Recovery / Sample t.ength	Change (Depth/Ft.) or Screened Interval	Soil Density/ Coneistenc y or Rock Hardneaa	Color	Material Classification	s c s ·	Remarks	Sample	Sampler BZ	Borehole**	Odilor 87**
					0,4		30	Topolis , sol , soly m	m	Inno fr	0/1			
L				2.7/3	2.1		ton	Bond, clargy, motiled	oran	sl. word 19 FB 150	D 2203			2
ŀ		3	$\overline{/}$	1/	3.5	from m	n 19	Bill, dupy		of most	2		.	<u> </u>
F				1.7/3	4.4	Lorse	gy	Sand, stee , fr gred	<u> </u>	net wet	7			0
		6						The state of the s			7			
ŀ			/					Bond, claya, front	4_	wet	20			L
		9	/-	3.0/3				less chur as botton			3			1
		7						TD 9'			2			┞
			/								-	_		L
			$\overline{}$,	_					╁╾┤	+		
									-					
		·	\angle											
			_											
-						<u> </u>			<u> </u>		╂┈┥	_		-
F														
			/,											
				,							-		-	_
	_		//					•	 		┞╌┤	-	-	
	\dashv	· .									╁╌┤	\dashv	$\neg \dagger$	
-	' Inclu		itor readir		t intervals			ase reading frequency if elevated repor	se rea	a. Drillir Background				_

		NAMI			16 03, 124	na	G BORING N	UMI	BER: CNC19 B 5/2/99	16				_
		NUMI COMI			124°		GEOLOGIS	ξŢ.	<u>5/2/99 </u>					-
		RIG:		Ha	nd an	<u>se</u>	DRILLER:	•	JA					•
	Γ.					_	RIAL DESCRIPTION			PID/F	ID Re	ading	(ppm	<u>:</u> 1)
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened interval	Soil	Color	·	⊃ 0 C 0 +	Remarks	Sample			Oriller BZ**	
					9	rgd	Sand raily w/		moist at	ο				
			_]		10-1	of from		ful boul	0			0	
छाई	203						and odor, soil stange		ful bond intertation a bld	12	2 <i>7</i>	ra,	15	Hoodsym
							slar is soil a		net	18		140	11.	
		<u>/</u>		_			water tolle				'			
				1							igsqcup			
		/ 	ļ	-	<u> </u>	ļ	TD5'							
	<u> </u>		-	! 	 	 		_			<u> </u>			
٠	,	-		-									Щ	
Mirror.		-		1		<u> </u>		_						
						 				-	H			
				1										
					1		_							
				_		<u> </u>								
		4		_										
	 -	/		-						_	Ш			
		/	1	-		_	-			-				
	ļ					-							Н	
			┼─	-		\vdash							\vdash	
			 	1		\vdash		-	-	-	H		-	
			_				·	 			\vdash		-	
-	 		1	1				†		\vdash				
		_	er rock br					1	. D.90		<u></u>			ı
	ide mon Iarks:		ng in 6 fox	ot intervals	@ borehole	. Incre	ease reading frequency if elevated repon	se rea	_{d.} Drillin Background					
Can	verted	to We	ell:	Yes			No Well 1.0), # [*]	-					
						_		- "						

			BOR	ING LOG		Pa	age _/	of _	
PROJECT NAME:				BORING NU	MBER.	CNCI	9-	BI	7
PROJECT NUMBER:				DATE:	IVIDEIX.	5-4		- '	<u> </u>
DRILLING COMPANY:					r:	5-4 81800			
DRILLING RIG:	<u> </u>	50/56		DRILLER:	<u>f</u>	pricen			_
	<u> </u>		RIAL DESCR				PID/FI	D Reading	(ppm)
Sample No. (Ft.) 6" or RQD / Sample Recovery / Type or Run (%) Sample Length.	Lithology Change (Depth/Ft) or Screened Interval	Soll Density/ Consistenc y Color or Rock Hardness	Material Cl	assification	U S C S .	Remarks	Sample	Sampler BZ	Oriller BZ**
							4		
2		DK Brown	Sudus	It waran	· ·	<i>loist</i>	4		
3		11	11 / 11			Morist	4		
4/3	-	11	11 4			Noist.	4	1	
V 5		Brown	Sarlasil	1	<u> </u>	Moist	4		\Box
Na		white	Weatherd	rock girgs		Day	à		
7	V.	7	Silty	sard		let	\Box	7	
8 25	f		1				\square		П
9]	Dy.	Sardys	ilt	Se	treated	T		
10		7	ti '	11		41	1/	-	
11			te e	£1	1	1	1		
12/4			S/KV S	aid	· V	Vet			<u> </u>
	EOB							T	
						-			
	1								
	1								
	i i								
]						-		
								T	
	[_						
									7
							7-1		
*When rock coring, enter rock br		<u> </u>				Deff	line A-		
** Include manitor reading in 6 for Remarks:	i intervals	g borenole, incre	ease reading frequen	icy II elevated reponse	read,	Backgroun	ling Ar Id (ppn	n):	
Converted to Well:	Yes		No X	Well I.D.	#:				

							BOR	NG LOC	_	0.1016	ge _{	_ of .	1
		NAM				_		_BORING N DATE:	UME	BER: C//C/		Ol	<u>a_</u>
		COM						GEOLOGIS	ST:	51300			—
		RIG:	, , , , , ,		3,50	\angle	5420	DRILLER:	•	P. MILLET	ર		=
						ATE	RIAL DESCRI	PTION			PID/FI	Readin	g (ppm)
Sample No. and Type or RQD	(Ft)	Blows / 6" of RQD (%)	Sample Recovery / Sample Length	Lithology Change (DeptivFt.) or Screened Interval	Soil Density/ Consistenc Y OF Rock Hardness	Color	Material Cla		U	Remarks	Sample	Sampler BZ	Driller BZ"
	1						Gravel 1	C://		Dry			
	2]	4.800	48-	Sandy	Si /		Moist	4		\Box
1	8			1			1. 1	n		Maich	4	7	П
┝╲	A		3.5				L(1/		100+	14		+
/	5		7.7		olive Sva	. 1		t /	\dashv	Saturated)	໘	-	††
_	1				3	,	(1 (•	\dashv	11	Ħ	\top	\forall
	10			1	/		li i	,		it	M	\top	
├	P		3.5		•		3/4	5and		- 1/	H	\top	\forall
	9		<i>3</i>	220			2	Jana				- -	+
	1_	_		EOB	•						+	-	+
'·	10			600							╁┼		++
- V	//_	<u> </u>							\dashv		1	+	\vdash
	/a	/						2 01	\dashv	-	+		\vdash
							E0809	144.			\vdash	_	Н
		\angle								· · · · · · · · · · · · · · · · · · ·	1		Н
											\sqcup		Ш
											Ш		Ш
]									
										-			
													\Box
													П
													\prod
									П	-			\prod
											†	-	\forall
UU, Inclu	de moni arks:		g in 6 foo	t intervals			ease reading frequent			Background	ng Ard	ea n): [7	
Conv	erted	l to We	all:	Yes			No No	Well I.D). # .				

							<u>B0</u>	RING	LOG	<u> </u>	BER: CN 5- 5/5< \$. /	Pag	e 4	_ of .	1
PRO	JEC1	NAM	E :					BOR	ING N	UME	BER: CN	C 19	-7	50	
		NUM						DATI	E:	· -	5-	4			
		COMI	PANY:		0/3	5 2	w	GEU	LUGIS	١: -	<u> </u>	10 10/11/	621		
DRIL	LING	RIG.						CRIPTION	LLIN.		<u> </u>	PIFEE	7/4		
Sample No. and Type or RQD	(FL) or	Blows / F or RCD (%)	Sample Recovery / Sample Length	l	Soil Density/ Consistenc or Rock Hardness			I Classificatio		U s c s •	Remar	ks	Sample	Sampler BZ	Driller B.Z**
	l				Brown		Sarrey	si/f			DEX		1		
	2				71		H I	Sove	your		Dex	+	11		\Box
1	3				Ollyn	ź,	te c	Tr. cl	011		dis	14	4		
 	4		3.5		(1)		Sardy	silt	7		All mile	2 1/2	4		
/	5		2.2	Y	1/		11	4			Wet		4	_	H
 	7				11		1,	11			Sat	wated		_	\forall
	7		-		11		-	·		_	SI	L	[]	+-	\vdash
	0		An		11		71	Some	10.		1/2	uea	/		\vdash
	<u> </u>			ļ	· · ·			Some	Tag		0007		+		\vdash
<u> </u>				EOB	<u>.</u>	7							4	- 	
		/_								-					\vdash
<u> </u>		/_			!		_						L	-	
<u></u>		/_		1				-							Ш
<u> </u>						-	_								Н
<u></u>															Ш
															Ц
				<u> </u>											
]											
												-			
							-								
											_	٦		<u> </u>	
				1		1					-				
<u> </u>					-			_			_			+	H
											<u>-</u>			-	H
- Inclu	de mon	itor readin	er rock bro ng in 6 foo		② barehale.	Increa	ase reading free	quency if elevat	ed repons	se read		Drillin			— 4⊸
Rem	arks:						_ 🗸					ground	(ppn	1):[7
Conv	erted	to We	:II:	Yes			No _		/ell I.D	. #:					

PRO	JECT	· NAMI	E:				BOF	RING LOC BORING N	3	Pag BER: <i>CNC 19</i> -	e <u>/</u>	_ of _ 200	
		NUM						DATE:		5-4			
:a.L	LING	COM	PANY:					GEOLOGI	ST:]	5-A 51800			
DRIL	LING	RIG:		25	0/	54	0 0	DRILLER:		M. COLER	<u> </u>	<u> </u>	
						ATE	RIAL DESC	RIPTION			PID/FI	Reading	(ppm)
Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6 or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soli Density/ Consistenc y or Rock Hardness	Color	Material (:lassification	s c s	Remarks	Sample	Sampler BZ Borehole**	O'Iller Bzee
-					- The Part White	(S)(NO)	191	H 00.11		Dex			
\vdash	1	/		-	9K.ca	24	To June	K 96://		VEY	{ 		+
 	2	/			DK.GO		PACI2	(+) (/		DAY			+
X	3	/_			11	<u>, </u>	Sandy	Si H		Moist (<u> 20</u>		$\downarrow \downarrow$
	4	/	4						Ш	Moist (₹ Ø	<u>~ </u> _	┷┪
	5	_	,	W									Ш
	6				DA.G	my	:			Wet.			Ш
	7				012~4	rey	Silky	Sand		Saturated			L.I
	8		2.5		a	1	Siltr	sand		Seturated			
	9		~	 				and a second sec			-		П
				EOB	 ,			<u> </u>				\neg	
🕇				1							\Box	"	\top
				1							T		$\top 1$
		-		1		-					1		†
				1					H		$\dagger \dagger$		+
-				1		-					╁┈┼		+
┝┈┽	_	-		1		-		-			+-+	_	┼┤
-				1							╁		┼┫
┝╌┤			 								++		+
-		\leftarrow				-			 		┿┤	_	╁┪
	_	/									+		+
		/							-	-	+		
 		/_		1			_				+	_	1
$\sqcup \downarrow$		/_,				 					\sqcup		\perp
		/,						<u>.</u>			\sqcup		
		/				ļ					\coprod		\sqcup
eme eme	se mon arks:	itor readi		ot intervals	@ borehole	e. Incre		ency if elevated repon		Background	ng Ar I (ppn	ea 🤚	3
Conv	ertec	to We	e();	Yes		-	No —	Well I.D	J. 帯: ¸				

							BORING LOC	3	Pag	де _	_	of_	_
PRO.	JECT	NAME	E :				BORING N	UME	BER: CNC/9	7-	73	2	
PRO.	JECT	NUMI	BER:				DATE:	•	5-4		_		/ _
		COMI	PANY:		350	1/2	GEOLOGIS PRILLER:	ST:	D. MILL	<u> </u>	_		—
UKIL	LING	RIG.					RIAL DESCRIPTION	·	P. MILL				
Sample		Blows /	Sample			IAIE	RIAL DESCRIPTION	ן ט		PIDAT			PPATA)
No. and	(FL) or	RQD	Recovery	Change (Depth/Ft	Soft Density/			S			2	,	
Type or RQD	Run No.	(%)	Sample Length] a	Gonalatenc y	Color	Meterial Classification	s	Remarks	Semple	į	Borehole	5
				Screened Interval	Rock			$ \cdot $		3	3	8	Driffer
	0	•			Hardness					<u> </u>			
	_						Asphalt		DAY				
	2	$\overline{}$]			411		Der				
	3			j '	4.34	zen.	Sandy Silt	П	Maist	16		寸	~
	A		A	İ	Olfre	4.6	Sector Stiff	-	Moser	Ĭ			7
	5			-	Black	7	Sandy Silt		World	<u> </u>			_
	1				Ding		SIL SAIN		Saturated	1	_	_	7
	1	\leftarrow		1	13	7,	Dilty Jaid	╁╌┥	11		_	\dashv	\dashv
	7	\leftarrow	1	-		9	Silry Said	-	1//	1	\leftarrow	\dashv	\dashv
	8	/	1	İ	lı	"	Deversit		Wet		Н	H	
	9	4		-	-			<u> </u>		ļ			
		4		003						ļ			_
						<u> </u>				ļ			_
				1									
	ļ —			1									
				1						Т		П	
!	┢			i	' 	 		 		✝	-	T I	
			-							+	\vdash		
				1				-		+		H	\dashv
\vdash				1		-				+	-	H	\dashv
<u> </u>		\leftarrow		•		-	-	+		+-	-	$\vdash\vdash$	\dashv
	-	/ -		1				 		 			Щ
<u> </u>		/ /,		-			_	_		4		Ш	
						<u> </u>					ĭ		
L		\angle											
			er rock bro		@ hyshola	-	ase reading frequency if elevated repor		d. Drilli	no A	res		2
	arks:		-y al a 100	- II (VOT 4 \$1)\$					Background	q (bb	m):	Z	
Can	verter	to We	alt.	Yes			No Well I.	D. #					_

PTOJECT NAME:

Remarks:

Converted to Well:

JECT NUMBER: DRILLING COMPANY:

17 1 0010	* 1
	イングル

Background (ppm):

Well I.D. #:

	PRO.	JECT	NAME	BER:		<u>to 19</u> 124	1	BORING N DATE:	IUMI	BER: <u>CNC19 B</u> 5/27/99	123	3	_	
	DRIL	LING	COM	PANY:	Tol	umbia	U	GEOLOGI	ST:	ВРН				
	DRIL	LING	RIG:		St	Many	fe	DRILLER:		RB				
ſ				_				RIAL DESCRIPTION		 .	PID/FI	D Rea	ding	(pp
	Sample No. and Type or RQD	Depth (Ft.) or Run No.	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened interval	Soil Density/ Consistenc y or Rock Hardness	Colo	Material Classification	U S C S *	Remarks	Sample	Sampler BZ	Borehole**	Driller BZ**
ľ					0,4	Loose	gn	Jopane , moe , mor mos		st. wort	D			0
ŀ				2.2/1	1.0		ath	Lack lease 1	<u> </u>	CFill) -	90			H
۱			\leftarrow	2.74			grad!	sort frogs		negoti -	0			<u> </u>
4	<u> </u>		\angle				on	sara , suy , f. god		77-0 -	0			
	_	4				-				M5FB230304	0			_
ļ					5.2					Mex Q145				
2			\angle	3.0/40	GU'	MK	not ami	Sand, clayey no		moist no wet	0/		-	L
1						•	04.	sandy clay				\dashv		ļ.,
1		8	/			<u> </u>	guy	61 Band, figurd	-	wet	0			<u> </u>
ŀ								708						<u> </u> -
ļ							<u> </u>							<u> </u>
ļ			//			_	ļ					_	· · · · · -	ļ.
ŀ			_]]				_			\dashv		-
ŀ			$\overline{}$				<u> </u>					\dashv	_	<u> </u>
ŀ			_		.							-		_
ļ												\dashv		_
ŀ			\angle				_					_		
Ì							<u> </u>	<u> </u>		1				┝
ļ			//											Ļ
ŀ			\angle											<u> </u>
ļ			//									\dashv		-
ŀ			$\overline{}$									\dashv		_
			/	<u> </u>] i		<u> </u>							<u> </u>
	<u>-</u>		//			<u></u>						_		\vdash
			//			<u> </u>	_		<u> </u>		\vdash			\vdash
L	* When	rock co	oring, enle	er rock bro	keness.				<u> </u>		<u> </u>			<u> </u>
		de mon	itor readir			② borehole.	Incre	sse reading frequency if elevated repons	sе геа	_{d.} Drillin Background				
			to We		Yes			No Well I.E			156	7.[

		NAME		<u> </u>	tte 19	<u> </u>			BORING	NUM	BER: ()	1C 19	<i>B</i> 2	·4		
Pl	_:CT	NUM	BER:	9	124				DATE:	NOT.	BER: () 5/27 BDH	<u> 199 </u>				
		COM	PANY:		<u>olumbi</u>				GEOLOG		BUH					
DRIL	LING	RIG:		\$\tau	ratopy				DRILLER		<u>RB</u>					
	S	5 1	6	Little alla ave	V N	ATE	RIAL DE	SCRIPT	TION				PID/FI	D Rea	ding	(ppm)
Sample No. and Type or RQD	(FL) or	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soll Density/ Consistenc y or Rock Hardness	Color	Mate	erial Class	ification	0 % 0 % *	Rema	rks	Sample	Sampler BZ	Borehole**	Oriller BZ**
			1	0.4'	and	2504	In of of	ank,	not _		1		0			7
-		$\overline{}$	2.5/1	137	ffin	2/14	Cow.	L silve	<u> </u>		el hois		0	\vdash	_	0
<u>ןן</u> זיי	<u></u>		71		wa	tu	xami	t in	ngt.	 	sl. moist		0			
07		_				יע טק	Sand	MAN BE	Prone	<u> </u>	19 582410	704	0/			
<u> </u>	4_					ton		770	~~~	 	wet a	4-4.5	0	 		\vdash
\vdash			- 1	,				-	=	+	-					\dashv
			224	ľ				,	_	 -				<u> </u>		\vdash
	0		 				*	•		+-						
	8		<u> </u>				TD.	01	<u>.</u>		_			-		\dashv
- L.								<u> </u>			_					
										 	-					
										_						
									·	 -					_	
							•				-					
		<u>/</u> ,						_								
		/														
								_								
<u> </u>		/														
4																_
	* When rock coring, enter rock brokeness. ** Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. Drilling Area															
	Remarks: Background (ppm):															
Conv	Converted to Well: Yes No Well I.D. #:															

DRI	LLING	RIG:	Ι		stops		DRILLER	:	<u> </u>				_
Sampl No. and Type o	(FL) or	Blows / 6" or RQD (%)	Sample Recovery / Sample Length	Lithology Change (Depth/Ft.) or Screened Interval	Soil Density/ Consistence y or Rock Hardness		<u>-</u>	U S C S ·	Remarks	Semple	Sampler BZ	Borehole**	Driller BZ** dd
				0.6			Gand, silvy sol.		dry.	0/			0
			1.5/4			tar	Band, sily sl.		st. moist to	Ó			
	<u> </u>					ļ 	clayer, rock frage		st. most w				
	4								195FB250304	0/1	0		
			,						ovet a				٠
			1.6/4	'	fin	nod nav	clay, sandy	<u> </u>	moist to met		D :	- 4	7/8
2					2 det	81	0' 0	<u> </u>	·				
4	4							1					
_							TD8'						
													Щ
								$oldsymbol{\perp}$					
							_						Ц
								ļ					
	<u> </u>	\angle						<u> </u>					
								<u> </u>			_		
								<u> </u>		ļ	_		Щ
								<u> </u>	,				
	_				<u> </u>			<u> </u>					
										ļ			Щ
								<u> </u>					
_	-	/						_		ļ 			
	<u> </u>	/								<u> </u>		<u> </u>	
	<u> </u>	/_											
		oring, ente			_								

		MAM		<u> </u>	.NE		·	BORING N	υмв	ER: 19 B z 6				
		MUN 7	BER: PA N Y:		1. 1.		<u> </u>	DATE: GEOLOGIS	·T· -	6/21/99				
ĎŘII	LING	RIG:	FAITI.		tento,			_GEOLOGIS _DRILLER:	·· -	1.2. 1				
		1	_	2			RIAL DESCRIF			<u> </u>	DIDÆ	ID Rea	ndina i	==
Sample No. and Type or RQD	(FL) or	Blows / 6" or RQD (%)	Sample Recovery f Sample Length	Lithology Change (Depth/Ft.) or Screened Interval		Color			U S C S •	Remarks		A3800 [c[ust]]	e kalanale	
	1] .			Ph	5:14452	al-F-UR		1204				
	Z					11 Bin	5:14, Sun	J		Moist	4			
	3		1		<u></u>	Comen	Fine Sun	1		1		П		
	4		1-/u] 		7	,		7	- V	†	Ħ	寸	
	5						11.	,						
	4						le							
	7				_			Eacrey						
	4		0/4]			
												Ц		
norde		\angle										Ш		
 		4										Ц		
 		/									<u> </u>		_	
		4									 	\sqcup		
		/					· · · · -·· -			<u> </u>	 		_	
		\angle					•				 		 -	
		/			<u> </u>				_		 	Н		
<u> </u>			<u> </u>							· · · · · · · · · · · · · · · · · · ·	 	$igcup_{}$		<u> </u>
 							-				+	\vdash		<u> </u>
											+	\vdash	-	-
 			<u> </u>						$\vdash \vdash$		+	 		<u> </u>
_			-			ļ			\vdash		+	┼		
	<u> </u>		 		-		<u> </u>		$\vdash \vdash$		+	\vdash		-
 	ļ				-			<u> </u>	┝┼	·	+			ļ
* Wher	rock c	oring, ent	er rock bro	keness.		l				-				
** Inclu		itor readi			@ borehole	, incre	ase reading frequency	/ if elevated repons	se read	ı. Drilli Background				
				·								411): 	느	_
Conv	ertec	to We	ell:	Yes	Tuy		No	_ Well I.D). #: _					

BORING NO .: CNC/9-MWO/

PROJECT CNC LOCATION: CNC19 DRILLER	Custom Drilling
PROJECT NO. CNC19 BORING CNC19-MWOI METHOD:	DPT - 1
ELEVATIONDATE 6/28/99 DRILLING	HSA
FIELD GEOLOGIST Marty Ray DEVELOPME	NT: NA
ELEVATION OF TOP OF SURFACE CAS	NG: Flush
ELEVATION OF TOP OF RISER PIPE:	
STICK-UP TOP OF SURFACE CASING:	
STICK-UP RISER PIPE:	
1.D. OF SURFACE CASING: 8	
TYPE OF SURFACE CASING: 5-66	man toole
with cover	West Mole
GROUND TYPE OF SURFACE SEAL: (OACE	te Dad
2/27/2/	-
ELEVATION	
RISER PIPE I.D.: 2"	
TYPE OF RISER PIPE: Sch 4	DYC
BOREHOLE DIAMETER: 4.25	"
TYPE OF SEAL: 910 of to	8" 615
	11 20
ELEVATION / DEPTH OF SEAL:	1'16"
TYPE OS SEAL: 30/65 Ch	oke sand
	2'6"
DEPTH TOP OF SAND PACK:	20
ELEVATION / DEPTH TOP OF SCREEN:	. 31,0"
ELEVATION / DEPTR TOP OF SCREEN.	. 5 7 5
TYPE OF SCREEN: Joh 4	o PVC
NORME	
SLOT SIZE X LENGTH: 10 Slo	× 10'
I.D. OF SCREEN: 2"	
	ļ
TYPE OF SAND PACK: 20/3	Sand
	ì
	EN: /3/0"
ELEVATION / DEPTHBOTTOM OF SCR	EN: /3/
ELEVATION / DEPTH BOTTOM OF SAN	
TYPE OF BACKFILL BELOW OBSERVA WELL: 20/30 5 4 4	
	1316"
ELEVATION / DEPTH OF HOLE:	0161

PROJECT CNC	* *	LOCATIO	N: CNC19	DRILLER Gratem	Drillia
PROJECT NO	NC19		CNC11- MWOZ	METHOD: DPT	•
ELEVATION		DATE	6/28/99	DRILLING HSA	
FIELD GEOLOGIST	Narty Ray			DEVELOPMENT: NA	
<u> </u>					
			- 51 51/47/04/05 705 05 6	TUREACE CASING	Flush
			TELEVATION OF TOP OF S BELEVATION OF TOP OF F	-	F1057
			- STICK •UP TOP OF SURF.		
			- STICK-UP RISER PIPE:		
·	╽╽┈╏┫		-I.D. OF SURFACE CASING	: 8"	
		ļ	TYPE OF SURFACE CASI		Tale
			COUET		<u></u> .
GROUND V		1		: concrete Da	ป
Latinities 1			2'x2'x6"		_
ELEVATION					
			- RISER PIPE I.D.:	Z"	_
			TYPE OF RISER PIPE:	Sch 40 PUC	_
					_
			- BOREHOLE DIAMETER:	4.254	_
			TYPE OF SEAL: 910	out to 5° 613	_
			·		
			ELEVATION / DEPTH OF	REAL.	1/10#
			TYPE OS SEAL: 30		
			- 111 2 00 0 <u>DAL. </u>		-
					-
		<u> ,</u>	DEPTH TOP OF SAND PA	ick:	1'6"
			_ ELEVATION / DEPTH TOP	P OF SCREEN:	2' /6
			7/75 - 5 4 4 4 5 5 1	Sch 40 PVC	
			-TYPE OF SCREEN:		_
		Ì	SLOT SIZE X LENGTH:	10 slot x 10'	
			OLOT GIZZ X ZENGTH.	- 10 G (4)	_
			I.D. OF SCREEN:	2 " .	
					_
				/	
			TYPE OF SAND PACK:	20/30	<u> </u>
		İ			_
		j			
		ļ			
			- ELEVATION / DEPTHBOT	TOM OF SCREEN	12,0"
			- ELEVATION / DEPTH BO		12/64
			TYPE OF BACKFILL BELO	DW OBSERVATION	, ,
				/30	
			ELEVATION / DEPTH OF	HOLE:	12/6
			· 		

PROJECT CNC	LC		V: CNC 19-MW03	DRILLER CUSTOM 2	rilling
PROJECT CNC PROJECT NO. CNC	19 Bo	DRING	CNC19-MWO3	METHOD: DPT	3
		ATE	6/28/99	DRILLING HSA	
FIELD GEOLOGISTMar	Ly Ray		<u> </u>	DEVELOPMENT: NA	
		Ţ	TELEVATION OF TOP OF F	LIDEAGE CASING:	Flush
<u> </u>			TELEVATION OF TOP OF S -ELEVATION OF TOP OF R		F 1037
			- STICK -UP TOP OF SURF		
		<u> </u>	- STICK-UP RISER PIPE:		
] ←		-1.D. OF SURFACE CASING	s: 8"	
		l i	TYPE OF SURFACE CASH	NG: Steel MUN-	•
			hole w/cover		
CROUND V		 	TYPE OF SURFACE SEAL	concrete pad	_
ELEVATION			2'x 2'x 6"		_
				I a l un suc	
	7	<u> </u>	- RISER PIPE I.D.: 2 *	Sch 40 PVC Sch 40 PVC	-
			TYPE OF RISER PIPE:	Jeh yo puc	-
			BOREHOLE DIAMETER:	4.25"	-
		-		out to 6" 615	-
				/ <u> </u>	•
					. / 4
			ELEVATION / DEPTH OF	_	110"
			-TYPE OS SEAL: 30	65	•
·					-
	-		DEPTH TOP OF SAND PA	CK.	1'6"
			BEFTH TOP OF SAND FA	OK.	
			_ ELEVATION / DEPTH TOP	OF SCREEN:	2'/6"
				P / 1/2 011/	
		 	-TYPE OF SCREEN:	JCH 40 PVC	-
			SLOT SIZE X LENGTH:	5ch 40 prc 10 slot x10'	
				24	
			I.D. OF SCREEN:		-
	4	ļ	TYPE OF SAND PACK:	20/30 Sund	
	" "		COI CANDI ACIC		-
				-	_
			#. # # # · ·		1240"
			-ELEVATION / DEPTHBOT		1216
			 ELEVATION / DEPTH BOT TYPE OF BACKFILL BELO 		12164
		į	WELL 20/		
	◀		ELEVATION / DEPTH OF		1216"

BORING NO .: CNC 19-14WBY

PROJECTLOCAT	ION: CNC19-14WOY	DRILLER <u>Custom</u>	Drillia
PROJECT NO. CNC19 BORING		METHOD: DPT	
ELEVATIONDATE	6/28/99	DRILLING HSA	
FIELD GEOLOGIST <u>planty Ray</u>	<u> </u>	DEVELOPMENT: NA	
	ELEVATION OF TOP OF	PUREACE CACING	Flush
<u> </u>	ELEVATION OF TOP OP TOP OF TOP OF TOP OF TOP OF TOP OF TOP OP OP TOP OP OP TOP OP TOP OP OP TOP OP OP TOP OP OP TOP OP OP OP TOP OP OP OP TOP OP TOP OP OP OP OP OP OP OP OP OP OP OP OP O		7/007
	STICK -UP TOP OF SURF		
	I.D. OF SURFACE CASING	s: 811	
I I		ing: steel man-	-
	hole with c		_
GROUND V	TYPE OF SURFACE SEAL	: concrete	_
	pad # Z'	x 21x 611	-
ELEVATION			_
		_ z"	_
	TYPE OF RISER PIPE:	SCH 40 PVC	
			_
	BOREHOLE DIAMETER:	4.24"	_
	TYPE OF SEAL: 9/0	out to 64 615	_
			_
			116
	ELEVATION / DEPTH OF		1 10
■	— TYPE OS SEAL: 30/4	os sand	_
	· · · · · · · · · · · · · · · · · · ·		_
		LCV:	2'6"
	DEPTH TOP OF SAND PA	ACK.	
	ELEVATION / DEPTH TO	P OF SCREEN:	3'10"
			<u> </u>
		•	
	TYPE OF SCREEN:	Jeh 40 PUC	
		Jch 40 PVC 10 slot x 10'	•
	SLOT SIZE X LENGTH:	10 slot x 10	- -
		211	
	I.D. OF SCREEN:		_
	T	30/20 Carl	
	TYPE OF SAND PACK:	20/30 Sand	-
			_
			, ,,
	ELEVATION / DEPTHBO	TTOM OF SCREEN:	1310"
	ELEVATION / DEPTH 80		13/164
	TYPE OF BACKFILL BEL		-
		o sand	
	ELEVATION / DEPTH OF		13'16"

BORING NO : CNC 19- MWOS

PROJECT_	CN	CNC19	LOCATIO	IN: CNC19-MW05	DRILLER Custom	Drilling
PROJECT NO).	CNCIA	BORING	CNC19- MWOS	IMETHOD: BPT	. 4
ELEVATION	_		DATE	6/28/55	DRILLING HS/	i
FIELD GEOLG	ogist -	Marty Ray		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	DEVELOPMENT: NA	
		11/				
					<u></u>	
		~~~~		ELEVATION OF TOP OF S	SURFACE CASING:	Fluss
		-1 I∢		- ELEVATION OF TOP OF R		
		I I∢		- STICK -UP TOP OF SURF		
		·III ₄		- STICK-UP RISER PIPE:		
				- I.D. OF SURFACE CASING	. 1	
			<b>'</b>	TYPE OF SURFACE CASH		·
			ļ	man-hole with		.
GROUN	$m \frac{1}{2}$			— TYPE OF SURFACE SEAL	concrete par	/
1	#220000			2'x2'x6"	concrete pay	•
ELEVA	TION		ا لسر	_ <u>K_F_F_</u>		•
				- RISER PIPE I.D.:	2"	
				TYPE OF RISER PIPE:	Sch 40 PVC	•
1				(TEL OF MOLKETEL.	Jan 40 Fre	•
				BOREHOLE DIAMETER:	4.251	-
					v+ 45 6" 615	.
•				- TIPE OF SEAL.	VI -0 4 813	-
l I						
				ELEVATION / DEPTH OF S	CCAL.	110"
				TYPE OF SEALS 70	115 sead	
				TYPE OS SEAL: 30	797 0000	-
					<del> </del>	• .
					CV.	1'6"
				T DEPTH TOP OF SAND PA	CK.	
				ELEVATION / DEPTH TOP	OF COREN.	2'10'
				ELEVATION / DEPTH TOP	OF SCREEN.	
				• •		
				TYPE OF SCREEN:	2" she 40 p	VC
				- (TPE OF SCREEN:		-
				SLOT SIZE X LENGTH:	14 det x 10'	
				SCOT SIZE A LENGTH	700100	-
				LD OF CORFER	z''	i
				I.D. OF SCREEN:		-
				TYPE OF SAND PACK:	20/30	
				TITE OF SAND PACK	_ 57,50	-
				<del></del>		-
			Ì			
			1			
						ļ
						12/0"
			<del>-  </del>	— ELEVATION / DEPTHBOT	· · ·	
			<del></del>	- ELEVATION / DEPTH BO		1216
				TYPE OF BACKFILL BELO		
					0/30 sand.	12'16"
				ELEVATION / DEPTH OF	HOLE:	10 10

# APPENDIX C FIELD SAMPLING DATA SHEETS

					Page	eof
Project Site Nar Project No.:	ne:	Sote 18 0124		Sample ID Sample Log Sampled B	cation: CNC1	
[] Surface So			•	C.O.C. No.		<u>DH                                     </u>
Subsurface	e Soil			Type of Sa	imnle:	
[] Other:				[] Low Co	oncentration	
[] QA Sample	е Туре:			[] High Co	oncentration	
GRAB SAMPLE DAT						
Date: 5/14/9	<u> </u>	Depth	Color		(Sand, Silt, Clay, Mo	
Time: 0953	<u> </u>	1 2/2/	Burn	Pile 1	sondy, se	moist
Method: Monitor Reading (ppr	m). 🔻	1 2	Burn	4000	, , , , , , , , , , , , , , , , , , ,	
	COMPOSITE SAMPLE DATA:					
Date:	Time	Depth	Color	Description	(Sand, Silt, Clay, Mo	sieture etc )
Date.	rine	Бериг	Color	Description	(Sanu, Sin, Clay, inc.	Isture, etc.,
Method:	<b>—</b>			<del>                                     </del>		
Monitor Readings	†			†		
(Range in ppm):		1	_		•	
			<u> </u>	†		
			<del></del>	†		
				†		
SAMPLE COLLECT	ION INFORMA	ATION:				
	Analysis		Container Requ	uirements	Collected	Other
			<u> </u>			
					<b></b>	
			<u> </u>			
			<del> </del>		<del></del>	<del> </del>
<u> </u>			<u> </u>		<del>-</del>	
			+		-	+
			<del> </del>		<del> </del>	+
			+			+
			<del>-</del>			+
			<del>                                     </del>			
OBSERVATIONS / N	NOTES:			MAP:		
	·					
				1		
					•	
		-				
Circle if Applicable:		_		Signature(s):		
MS/MSD	Duplicate I	ID No :		_ Signature(s).		
Moturon	Dupireate :	D 140				

Sample ID No.: 185L B020405 CNC18802 Project Site Name: Project No.: Sampled By: [] Surface Soil C.O.C. No.: N Subsurface Soil [] Sediment Type of Sample: [] Other: [] Low Concentration [] QA Sample Type: [] High Concentration GRAB SAMPLE DATA: Date: 5 14 199 Color Description (Sand, Silt, Clay, Moisture, etc.) Depth Time: madim Method: Monitor Reading (ppm): COMPOSITE SAMPLE DATA: Depth Color Description (Sand, Silt, Clay, Moisture, etc.) Method: Monitor Readings (Range in ppm): SAMPLE COLLECTION INFORMATION: Analysis Other **Container Requirements** Collected OBSERVATIONS / NOTES: MAP: Circle if Applicable: Signature(s): MS/MSD Duplicate ID No.:

Project Site Name: Sample ID No.: Project No.: Sample Location: Sampled By: [] Surface Soil C.O.C. No.: Subsurface Soil [] Sediment Type of Sample: [] Other: Low Concentration [] High Concentration [] QA Sample Type: GRAB SAMPLE DATA: 5-4-99 Depth Color Description (Sand, Silt, Clay, Moisture, etc.) Time: Sardy Sill Method: Monitor Reading (ppm): COMPOSITE SAMPLE DATA: Date: Time Depth Color Description (Sand, Silt, Clay, Moisture, etc.) Method: Monitor Readings (Range in ppm): SAMPLE COLLECTION INFORMATION: Analysis Container Requirements Collected Other OBSERVATIONS / NOTES: MAP: Headspace 15 to 20 ppm Circle if Applicable: Signature(s): J. J. Sism MS/MSD **Duplicate ID No.:** 

Sample ID No.: Project Site Name: Project No.: Sample Location: Sampled By: C.O.C. No.: [] Surface Soil Subsurface Soil [] Sediment Type of Sample: [] Other: [] Low Concentration [] QA Sample Type: [] High Concentration GRAB SAMPLE DATA: 5/14/99 Date: Depth Color Description (Sand, Silt, Clay, Moisture, etc.) slit with day, moist Time: 1120 dark grey to 4-6ft Method: Monitor Reading (ppm): COMPOSITE SAMPLE DATA: Date: Time Depth Color Description (Sand, Silt, Clay, Moisture, etc.) Method: Monitor Readings (Range in ppm). SAMPLE COLLECTION INFORMATION: Analysis Collected Container Requirements Other 4 Encore RTEX PAH 774 402 Metals **OBSERVATIONS / NOTES:** MAP: Circle if Applicable: Signature(s): MS/MSD Duplicate ID No.:

·		Collection of	missed samp	les from May 14	1, [999] Pag	e of		
Project Site Nam Project No.:	ne:	Site 19	3	Sample ID No.: Sample Locatio	n:	303-0506		
[] Surface So [] Subsurface [] Sediment [] Other: [] QA Sample	e Soil e Type:		-	Sampled By:  C.O.C. No.:  Type of Sample:  [] Low Concentration  [] High Concentration				
GRAB SAMPLE DAT								
Date: 5/17/9	9	Depth	Color	Description (Sand	, Silt, Clay, Mo	isture, etc.)		
Time: 1550  Method: 5-6  Monitor Reading (ppm): 5-6  COMPOSITE SAMPLE DATA:		5-6'	brown silly sand					
COMPOSITE SAMPL	E DATA:	T	<del></del>	1		· <u> </u>		
Date:	Time	Depth	Color	Description (Sand	l, Silt, Clay, Mo	isture, etc.)		
Method:					•			
Monitor Readings	<del>                                     </del>							
(Range in ppm):								
SAMPLE COLLECTI	ON INFORMA	TION:	·	•				
	Analysis		Container Requ	uirements	Collected	Other		
PAH			1402 jac					
Toc.			1 402 19		<u> </u>			
Grain Size	, Hydrome	er	320zj	ar	/			
BTEX	<u> </u>	<u> </u>	L encare					
						_		
					<u> </u>	_		
OBSERVATIONS / N	OTES:		t	MAP:				
		ed at 3-45+		<b>t</b>				
was title T	Bourcy	Lasmall am	ount					
of recovery	at the	5-6ft leve	el,					
Circle if Applicable:				Signature(s):	, -	, <u>,                                   </u>		
	Duplicate I	ID No.		Janet 7	Brhowk	A		
MS/MSD	<b>I</b>	6LB03-0506	J.		8			
I	1 0		-					

		, o 12 o o o o o o o o o o o o o o o o o	MENT SAMPLE	200 01.221		. 7		
					Pag	e of <u>/</u>		
Project Site Nam Project No.: [] Surface So	. – il			Sample ID No Sample Locat Sampled By: C.O.C. No.:	ion: <u>18.547</u> 	e <u>l</u> of <u>1</u> 3 <i>03-040</i> 5eo		
[] Sediment [] Other: [] QA Sample	_	· .		Type of Sample: Low Concentration [] High Concentration				
RAB SAMPLE DAT ate: 5-4-		Depth	Color	Description (Sa	nd, Silt, Clay, Mo	nisture etc )		
ethod: 1500 lenitor Reading (pprr	n):	9405	LEvon	Siltr				
ate:	Time	<b></b> Depth	Color	Description (Sa	nd, Silt, Clay, Mo	pisture, etc.)		
Method:		, , , , , , , , , , , , , , , , , , ,	5 3			,		
Monitor Readings Range in ppm):								
AMPLE COLLECTION		ION:						
	Analysis		Container Requ	uirements	Collected	Other		
DEEDWATIONS / N	OTES:			IMAD:				
HERE		3 ppn	) .	MAP:				
Circle if Applicable:	<u> </u>			Signature(s):				

#### **GROUNDWATER LEVEL MEASUREMENT SHEET**

"你是我们。"	1 Andrews	4.30	A Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Comp	er strock turk	enthalte expense	<b>HONEY CONTRACT</b>	はるべいないないから	CONTRACTOR OF THE
Project Nan			مو 6		Project No.:			
Location:	,	<	4-900 E	9	Personnel:	10m /Jasa	n, Par, JE	- FF
		<u>Sum</u>	4 - 90°E		Measuring De	vice:		
Tidelly Infl	uenced:	Yes	<u> </u>		Remarks:	-		
Well or Piezometer Number	Date	Time	Elevation of Reference Point (feet)*	Total Well Depth (feet)*	Water Level Indicator Readin (feet)*	Thickness of Free Produc (feet)*	Groundwater Elevation (feet)*	Comments
FOSOIA	9/9	0903		12.60	6.05/9.15	3.[0		
mwos	9/9	34/4		12.29		0		
mwol		919		13.45	5.28	0		
FOSOIB		0920			4.21	0		
19/mwo2		0922	,	12.47	4.15	0		
19mw03		0924		1236	4.337	0		
19mm14		0928		13.33	2.83	0		
450501C		5126		12.92		0		
POSOB		0928		12261	€6.16	6		
18mme1		0934		11.65	<del> </del>	0		
asum81		036		36.30	3.6/	0		
FD801 E		0937		10.19	4.54	0		
19mm66		0940		11.60		0		
18mmor		OPUR		10.45	2.77	9		
					/			
* All measurements	to the nearest 0	01 foot	1	<u> </u>	1		Page	e of

_ of ____

Page___

Project Site Name: Project No.:	<u> </u>	412			Sample ID No.: /8GLA Sample Location: CNC16/ Sampled By: TNT				NCIBULO
[] Domestic Well Data  Monitoring Well Data [] Other Well Type: [] QA Sample Type:					C.O.C. Type of [] Low				
SAMPLING DATA:									
Date: 9-9-99	Color	рΗ	s.c.	Temp.	Turbidity	DO	Salinity	Other	
Time: 1550	Visual	Standard	mS/cm	Degrees C	NTU	mg/l	%	NA	
Method: pcx , PURGE DATA:									
Date: 9-9-99	Volume	рН	S.C.	Temp. (C)	Turbidity	DO	Salinity	Other	
Method: per.	Initial	6.91	.138		Ø	1.09	<u> </u>		
Monitor Reading (ppm):	1	10.86	1.09	25.7	0	0.46		0.42	
Well Casing Diameter & Material	2	6.87	1,29	25,7	Ø	0.60		0.84	
Type: 1,25" PVC	3	6.89	1.42	25.6	Ø	0.94		1.26	
Total Well Depth (TD): //, 65	4	692	1.49	25.7	··Ø	1.77		1.68	
Static Water Level (WL): 4.68	.5	6.87	1.51	25.5	0	0.45		2.10	
One Casing Volume(gal/L): カルス			712						
Start Purge (hrs): 1330									
End Purge (hrs): 1343							_		
Total Purge Time (min): 13							-		
Total Vol. Purged (gal/L):									
SAMPLE COLLECTION INFORMA	TION:	•	•	•					
Analysis		Preser	vative *		Container F	Requirements	1	Collected	
¥ <del>54</del>				<u> </u>	T ( )				
PAPIBLEX EDB, MIBE,	Total Nky	HC			40ml	**		3 -	
Amions Dissolved Mithelm		8 -	(1)	X	500 y	$\frac{n\omega}{2}$		-	
Discolved Mithem	<u></u>	9 1	<u></u>	<u> </u>	y yir			<u> </u>	
metals		HNO	23	14	LTR		-	1	
							_		
PAIN		0		(ال	(   Lt	n		2	
									ł
<u>-</u>				<u></u>				+	1
								10	
OBSERVATIONS / NOTES:		ı		<u> </u>				170	1
Duplicate taken	POD	•							
Circle if Applicable:					Signatule(	st A			
MS/MSD Duplicate ID No.:					1	Mol	- 14		
						• •			

							Page	of	
Project Site Name: Project No.:	CNC Site 18				Sample	ID No.:	18 GLM 02 01 CNCIBMWO2		
[] Domestic Well Data  Monitoring Well Data [] Other Well Type: [] QA Sample Type:					[] Low	•			
SAMPLING DATA:					<u> </u>				┥
Date: 9-9-99	Color	pН	S.C.	Temp.	Turbidity	DO	Salinity	Other	1
ime:   5   7	Visual	Standard	mS/cm	Degrees C	NTU	mg/l	%	NA NA	4
Method: OUT.									-
ate: 9-9-99	Volume	pH	S.C.	Temp. (C)	Turbidity	DO	Salinity	Other	1
lethod: Der	Initial	6.88	3.91	35,8	Ø	0.67			┦ 4
Ionitor Reading (ppm):	1	1 -	3.75	25,1	Ø	0.83		1-23	٦,،
Vell Casing Diameter & Material	2		3.67	24.9	Ø	0.72		2.46	۶, ۲
ype: 1-25"PVC	3		3.45	24.8	Ø	1.69		3.69	٦,,
otal Well Depth (TD): /0 .45					.,				]
Static Water Level (WL): 2.77									]
ne Casing Volume(gal/L):†;	.46								
tart Purge (hrs): 1346									
ind Purge (hrs): 1358						_			_
otal Purge Time (min): 12			<u> </u>			ļ . <u>-</u>			_]
otal Vol. Purged (gal/L):				<u>_</u>					4
Ample COLLECTION INFORMA	TION:	Broom	rvative	1	Containor	Requirement	_	Collected	4
Analysis		Preser	valive		Container	vedan ement	<b>-</b>	Collected	┨
BTEX, EDB, MITBE TOL	al Nas	1 7	KU	3	X 40m	U		3	1
Actions	•	_			V 500	me			]
Deschart Methers	4-	<u> </u>	4	-3	<del>x 40 n</del>	<del>1 6</del>	<del>-</del> -	<del>                                     </del>	╣
PAR		Ç	<u> </u>	2	y /L	TR	<u>-</u>	2	╣ .
METAU		HA	103	1	× /L	ra_		1	╡ .
									‡
OBSERVATIONS / NOTES:								# (g	╡ . ╡
186cm 02	201 M	- m	5/m	SD			(1	8 SAMA	
						_	·		
Circle if Applicable:					(Signature	(A) (P)			$\dashv$
MS/MSD Duplicate ID No.	:				7 104	11-101			
12/	IMO	2017	<b>)</b>						

186LM03D01 Sample ID No .: Project Site Name: CNC 514 18 BELMOSDOI Sample Location: Project No.: Sampled By: [] Domestic Well Data C.O.C. No.: Type of Sample: Monitoring Well Data Low Concentration [] Other Well Type: [] QA Sample Type: [] High Concentration SAMPLING DATA: Date: 9-9-99 Color S.C. Temp. Turbidity DO Salinity pН Other Time: NTU mg/l Visual Standard mS/cm Degrees C % NA Method: Du TUN PURGE DATA: Date: 9-9-99 Turbidity DO Volume pН S.C. Temp. (C) Salinity Other Deila 0.84 7.09 23.2 Ø Method: Initial Monitor Reading (ppm): 🛭 1 5,32 Well Casing Diameter & Material 2 Type: 2" PVC 3 Total Well Depth (TD): 36,30 Static Water Level (WL): 3.01 One Casing Volume(gal/L): 5/32 Start Purge (hrs): 1408 End Purge (hrs): 1430 Total Purge Time (min): 20 Total Vol. Purged (gal/L): SAMPLE COLLECTION INFORMATION: **Analysis** Preservative Container Requirements Collected 8260 X YD MU PATE Utr METAUS MNO3 1 LTO **OBSERVATIONS / NOTES:** 1. Purged dry @ 1411 Started again @ 1415
2. Purged dry @ 1420 Started again @ 1425
3. Purged dry @ 1430 Purging completed Roots Circle if Applicable: MS/MSD Duplicate ID No.:

Page___ of ___

Project Site Project No.:	Name:	CHC	5,te 6124	18		Sample Sample Sample	18GLO	IEO <u>l</u> 9FDSØIE	
Monitor () Other \	tic Well Data ring Well Data Well Type: mple Type:					C.O.C.: Type of [] Low [] High			
SAMPLING DAT	ΓA:								
Date: 9-9-		Color	рН	s.c.	Temp.	Turbidity	DO	Salinity	Other
Time: 160	5	Visual	Standard	mS/cm	Degrees C	NTU	mg/l	%	NA
Method: PATA									
PURGE DATA:	ca.		· .,				T- 35-	- " "	<u> </u>
Date: 9-9		Volume	pH	S.C.	Temp. (C)	Turbidity	99	Salinity	Other
Method: per	•	Initial	7.02	.678		23_	1.33		
Monitor Reading		1	6.97		28.7	. Ø	0.54		0.90
Well Casing Diar		2	6.93	.705		3	0.17		08.1
Type: ℴℷ"	PVC	3	6.89		27.7	Ø	0.05		a-70
Total Well Depth		4	6.90	,701	<del></del>	0	0.32		3.60
Static Water Lev	el (WL): 4,54	<u> </u>	6,89	·715	27.0	0	0.40		4.50
	ume(gal/L): 0.90								
Start Purge (hrs)									
End Purge (hrs):									
Total Purge Time									
Total Vol. Purge	_								
	ECTION INFORMA	TION:	1 <u>-</u>						ı - <u></u>
	Analysis		Preser	vative	<u> </u>	Container R	Requirements		Collected
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	260		HC		201	40mc			3
	<u> </u>		F	<u> </u>	<u> </u>	<u>v =  -  -  -  -  -  -  -  -  -  -  -  -  - </u>			
PA	₩		B	<del></del>	_⊋¥	ILTR			2
HIM	10105		18		/ >	1500 m	! <u>[                                   </u>		
——————————————————————————————————————	METH		'	123	7.7	1//N to			0
<u> </u>	1/18/10		6	1CU	34	40 mi	<u> </u>		
mst	W//		HN	·Λ-	/ x	1/17	<del>7</del>	-	)
101121	HUS		P7 7~	<del>5</del> –		1 2 -			<del>/</del>
_			†						75
OBSERVATION	IS / NOTES:		<u> </u>		·				
Circle if Applica	oblor					Signatur	$\alpha A \Omega$		
MS/MSD	Duplicate ID No.:					1	"YHOW		
MO/MOD	Duplicate ID No	,				1 -	•		

SITE 18 Project Site Name: Sample ID No.: Project No.: Sample Location: Sampled By: C.O.C. No.: [] Domestic Well Data Monitoring Well Data Type of Sample: Other Well Type: ow Concentration [] High Concentration [] QA Sample Type: SAMPLING DATA: Date: 9/9/ Color рΗ S.C. Temp. Turbidity DO Salinity Other Time: NTU Visual Standard mS/cm Degrees C mg/l % NA Method: PURGE DATA: Date: 9 Volume Hq S.Ç. Temp. (C) **Turbidity** DO Salinity Other Method: Initial Monitor Reading (ppm): 🙆 🐠 Well Casing Diameter & Material 2 3 Total Well Depth (TD): 15.3.5 Static Water Level (WL): 6.43 One Casing Volume(gal/L); Start Purge (hrs): End Purge (hrs): Total Purge Time (min): Total Vol. Purged (gal/L): SAMPLE COLLECTION INFORMATION: Analysis Container Requirements **Preservative** Collected 9260 HCL 2540 mc MISTAU HNOZ OBSERVATIONS / NOTES: Circle if Applicable: MS/MSD **Duplicate ID No.:** 



#### FIELD ANALYTICAL LOG SHEET **GEOCHEMICAL PARAMETERS**

Tetra Tech NUS, In	nc.							Page of _	
	_ `	( = 10					v C. Z J	Mala I	
Project Site N		<u> Le 18</u>				Sample ID No	):	<u> </u>	
Project No.:							tion: CNC	8 mwd	<u>\</u>
Sampled By:	ナイ	+/5M				Duplicate:			
Field Analyst:	: IA	1/JM				Blank:			
	hecked as per (		cklist (init						
SAMPLING DATA									
Date: G	99	Color	ORP (Eh)	s.c.	Temp.	Turbidity	DO	Sal.	pН
Time:		(Visual)	(+/- mv)	(mS/cm)	(°C)	(NTU)	(Meter, mg/l)	(%)	(SU)
Method:									
SAMPLE COLLEC	TION/ANALYSIS I	NFORMATIO)	4:						
Dissolved Ox	ygen:					<u> </u>		1010	į
Equipment:	HACH Digital Titrato	TQ-XO re	CHEMetrics	(Range:	o~I _{mg/L)}	)	Analysis Time:	<u>)5:27</u>	.
		ı			_ <del></del>	_			,
Range Used:	Range	Sample Vol.	Cartridge	Multiplier		Titration Count	Multiplier	Concentration	ļ <b>l</b>
	1-5 mg/L	200 ml	0.200 N	0.01			x 0.01	= mg/L	. '
	2-10 mg/L	100 ml	0.200 N	0.02			x 0.02	≠ mg/L	]
	<u>∙2_</u> mg/L			•					-
Notes:	_							16.11	
Alkalinity:				-	4.		Analysis Time:	<u> 15:14</u>	-
Equipment: (	HACH Digital Titrate	or AL-DT	CHEMetric	s (Range: _	mg/L)	)	Filtered:	Ш	
D Head	Banas	Saminla Val	Contridge	Multiplier	Titro	ition Count	3 Authintion	Concentration	1
Range Used:	Range 	Sample Vol. 100 ml	Cartridge 0.1600 N	O.1	1100	&	Multiplier x 0.1	<u> </u>	-
	40-160 mg/L	25 ml	0.1600 N	0.1		<u> </u>	x 0.4	= mg/L = mg/L	<u> </u>
	100-400 mg/L	100 ml	1.600 N	1.0	ຈ	8 276	x 1.0	= 27 mg/L	┪ '
	200-800 mg/L	50 mi	1.600 N	2.0		<u> </u>	x 2.0	= mg/L	1 !
	500-2000 mg/L	20 ml	1.600 N	5.0		<u> </u>	x 5.0	= mg/L	†
	1000-4000 mg/L	10 mi	1,600 N	10.0		<u> </u>	x 10.0	= mg/L	7
							<u> </u>	··· <b>.</b>	
	Parameter:	Hydroxide	Carto	onate	Bio	carbonate	1		
	Relationship:	0	•	p		276	1		
CHEMetrics:	mg/L		-				-		
Notes:									_
Standard Additions	s: Titrar	nt Molarity:		Digits Requ	uired: 1st.:	2nd.:	3rd.:		
Carbon Dioxi	de:								
Equipment: (	HACH Digital Titrat	or CA-DT	CHEMetric	s (Range: _	mg/L	)	Analysis Time:	15:00	_
Range Used:	Range	Sample Vol.	Cartridge	Multiplier	1	Titration Count		Concentration	7
	10-50 mg/L	200 ml	0.3636 N	0.1	1		x 0.1	= mg/L	1
	20-100 mg/L	100 ml	0,3636 N	0.2	1		x 0.2	= mg/L	7
$\overline{\mathbf{v}}$	100-400 mg/L	200 ml	3.636 N	1.0	1	232	x 1.0	= 232 mg/L	1
	200-1000 mg/L	100 ml	3,636 N	2,0	1		x 2.0	= mg/L	7
CHEMetrics:	mg/L				•				_
Notes:	<del></del> +								
Standard Additions	s: Titrar	nt Molarity:		Digits Req	uired: 1st.:	2nd.:	3rd.:		_



Tetra Tech NUS, I	inc.				_		Page of
Durin (O)					Commis ID No		
Project Site	Name:				Sample ID No	_	<u> </u>
Project No.:					Sample Local	tion:	
Sampled By:		<del></del>			Duplicate:		
Field Analys		01/000			Blank:		
	Checked as per						
Sulfide (S ² ):	CITOWANALISIS	INFORMATION:					
•	DD 700	DR-8 5 <b>€</b> H	10.0 Oak- Obad	110 140 0-1-	-14/h1	A a b a'	1565
Equipment:	DR-700		IS-C Color Chart	HS-WR Cold	or vyneei	Analysis Time:	+003A
Program/Module:	610nm	93		Other:			
Concentration:	y.22	_mg/L				Filtered:	
Notes:							
<u> </u>							
Sulfate (S0 ₄ 2-	):						
Equipment:	DR-700	DR-8	Other:		-	Analysis Time:	
Program/Module:		91					_
Concentration:		_mg/L				Filtered:	
Standard Solution:	: ∐	Results: _					
Standard Addition	s: 📙	Digits Required:	0,1ml: 0,2	2ml:	0.3ml:		
Notes:							
	<u>-</u>						
Nitrite (NO ₂ -	N):					Analysis Time:	<u>1540</u>
Equipment:	DR-700	DR-829	Other:		•	Filtered:	<u> </u>
Program/Module:		60					_
Concentration:	$\Phi, \phi\phi Z$	_mg/L			-	Blank Correction	
i				:	Standard Solution:	Results	: 🔲
Notes:							
Nitrate (NO ₃ -	-N):					Analysis Time:	
Equipment:	DR-700	DR-8	Other:		_	Filtered:	
Program/Module:		55	•				
Concentration:		_mg/L					
		_			Nitrite Interfe	erence Treatment	t: 🔲
Standard Solution	: 🗆	Results:			Reagent	Blank Correction	n: 🔲
Standard Addition		_		2ml:	0.3ml:		
Notes:		<b>-</b> , -					
							<del></del>



eda Tech 1105, Inc.						rage_or_
Project City Name				Comple ID 1		
Project Site Name:				Sample ID N	<del></del>	
Project No.:				Sample Loc	ation:	
Sampled By:				Duplicate:		
Field Analyst:				Blank:		
	d as per QA/QC Ch					
SAMPLE COLLECTIONA	AND ASSESSMENT TO STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE	M:				
Manganese (Mn²⁺):						
Equipment: DR-700	DR-8	HACH MN-5	Other:		_ Analysis Time:	5 2 ¢
Program/Module: 525nm	41					
Concentration: $\underline{\hspace{1cm}} {\cal P}$	. 5mg/L				Filtered:	
					Digestion:	
Standard Solution:	Results	s:		Reagen	t Blank Correction	: 🗆
Standard Additions:	Digits Requi	red: 0.1ml; 0,	2ml:	0.3ml:		
Notes:						
Ferrous Iron (Fe ²⁺ ):				<del>-</del> -		
Equipment: DR-700	DR-8 4 5	IR-18C Color Wheel	Other:		_ Analysis Time:	1511
Program/Module: 500nm	33					
Concentration:	. <b>9</b> Фmg/L				Filtered:	
Notes;						
Hydrogen Sulfide (	H ₂ S):			<u> </u>		
Equipment HS-C	Other:		_		Analysis Time:	15 <b>6</b> 3
Concentration:	- l ma/l					
	- l mg/L	Exceeded 5.0 mg/L ra	inge on color c	chart:		
Notes:						
QA/QC Checklist:						
All data fields have bee	•	•		,		
Correct measurement	units are cited in the	SAMPLING DATA Ы	ock: L_	}		
Mulitplication is correct	t for each <i>Multiplier</i> ta	ble: 🔟				
Final calulated concent	tration is within the ar	ppropriate <i>Range Us</i>	ed block:		_	
Alkalinity Relationship	is determined approp	riatly as per manufa	cturer instru	ctions;		
QA/QC sample (e.g., 8	Std. Additions, etc.) fr	equency is appropria	ite as per th	e project planr	ning documents	: 🗆
Nitrite Interference trea	stment used for Nitrat	e test if Nitrite was d	etected:			
Title block is initialized	by person who perfo	med the QA/QC Ck	ecklist:			



Tetra Tech NOS,	mro.							rage U	
Project Site	Name: GI	le 18				Sample ID N	o.: 18 G	19401EC	) ]
Project No.:		24		•		Sample Loca	tion:		
Sampled By: JA JM			-		Duplicate:				
Field Analys				•		Blank:			
	Checked as per	QA/QC Ch	ecklist (ini	tials):		]	_		
SAMPLING DAT				,					
Date: 9	9 99	Color	ORP (Eh)	s.c.	Temp.	Turbidity	DO	Sal.	рН
Time:		(Visual)	(+/- mv)	(mS/cm)	(°C)	(NTU)	(Meter, mg/l)	(%)	(SU)
Method:									
SAMPLE COLLE	CTION/ANALYSIS	INFORMATIO	N						Ç BAÇ A Ç
Dissolved Oxygen:  Equipment: HACH Digital Titrator OX-DT CHEMetrics (Range: 0 1 mg/L)  Analysis Time: 15:70									,
							,		-
Range Used:	Range	Sample Vol.	Cartridge	Multiplier		Titration Count	Multiplier	Concentration	_
<u> </u>	1-5 mg/L	200 ml	0.200 N	0.01			x 0.01	= mg/L	1
	2-10 mg/L	100 ml	0.200 N	0.02			x 0.02	≃ · mg/L	]
CHEMetrics:	mg/L								_
Notes:								· ~ · · · · · · · · · · · · ·	
Alkalinity: Equipment:	HACH Digital Titrat	or AL-DT	CHEMetric	s (Range:_	mg/L)		Analysis Time: Filtered:	<u> </u>	_
Range Used:	Range	Sample Vol.	Cartridge	Multiplier	Titra	tion Count	Multiplier	Concentration	
	10-40 mg/L	100 ml	0.1600 N	0.1		&	x 0.1	= mg/L	
	40-160 mg/L	25 ml	0.1600 N	0.4		&	x 0.4	= mg/L	
<u> </u>	100-400 mg/L	100 ml	1.600 N	1.0	0	<u>ه 33°</u>	x 1.0	- 了了o _{mg/L}	
<u> </u>	200-800 mg/L	50 ml	1.600 N	2.0		&	x 2.0	= mg/L	<u> </u>
	500-2000 mg/L	20 ml	1.600 N	5.0		8	x 5.0	= mg/L	
	1000-4000 mg/L	10 ml	1.600 N	10.0		<u> </u>	x 10.0	≃ mg/L	
İ		·					7		
	Parameter:	Hydroxide		onate	e Bicarbonate				
	Relationship:		0		3	<u> </u>			
CHEMetrics:	mg/L								
Notes:									_
Standard Addition		nt Molarity:		Digits Requ	uired: 1st.:	2nd.:	3rd.:		
Carbon Dioxi		~~	•					ماماس	
Equipment:	HACH Digital Titrate	or CA-DT	CHEMetric:	s (Range: _	mg/L)	)	Analysis Time:	15:06	_
Range Used:	Range	Sample Vol.	Cartridge	Multiplier	]	Titration Count		Concentration	
	10-50 mg/L	200 ml	0.3636 N	0.1			x 0.1	= mg/L	
	20-100 mg/L	100 ml	0.3636 N	0.2			x 0.2	= mg/L	
<u> </u>	100-400 mg/L	200 ml	3.636 N	1.0		192	x 1.0	= 97 mg/L	
	200-1000 mg/L	100 ml	3.636 N	2.0			x 2.0	= mg/L	
CHEMetrics:	mg/L								
Notes:			_						
Standard Additions	s: 🔲 Titran	t Molarity:		Digits Requ	uired: 1st.:	2nd.:	3rd.:		



#### **FIELD ANALYTICAL LOG SHEET GEOCHEMICAL PARAMETERS**

etra Tech NUS, Inc.						Page	<u> </u>
Project Site Name:				Sample ID N	lo.:		- ·
Project No.:				Sample Loca	ation:		
Sampled By:				Duplicate:			_
Field Analyst:				Blank:			
Field Form Checked	as per QA/QC Ch	ecklist (initials):					
SAMPLE COLLECTIONA	NALYSIS INFORMATIO	ù l					
Sulfide (S²7):							
Equipment: DR-700	DR-8 <b>∕</b> 1⊈	HS-C Color Chart	HS-WR Cold	or Wheel	Analysis Time:	150	<u>6</u>
Program/Module: 610nm	93		Other:		_		
Concentration: $\phi$ ,	<u>식 (</u> mg/L				Filtered:		
Notes:				-			
Sulfate (S0 ₄ 2):			-				
Equipment: DR-700	DR-8	Other:		_	Analysis Time	:	
Program/Module:	91					_	
Concentration:	mg/L				Filtered:		
	Results						•
Standard Solution: Standard Additions: Notes:	7	: ed: 0.1ml:	0.2ml:	0.3ml:			
Standard Additions:	7		0.2ml:	0.3ml:	Analysis Time	: 154	· 
Standard Additions:	7		0.2mi:	0.3ml:	Analysis Time	: 154 	12_
Standard Additions:  Notes:  Nitrite (NO ₂ -N):	Digits Requir	ed; 0.1 ml;	0.2ml:	0.3ml:	-	: <u>154</u>	
Standard Additions:  Notes:  Nitrite (NO ₂ -N):  Equipment: DR-700  Program/Module:	Digits Requir	ed; 0.1 ml;	0.2mi:	·,· "	-		· · · · · · · · · · · · · · · · · · ·
Standard Additions:  Notes:  Nitrite (NO ₂ -N):  Equipment: DR-700  Program/Module:	Digits Requir	ed; 0.1 ml;		- Reagen	Filtered:	n: 🔲	12
Standard Additions:  Notes:  Nitrite (NO ₂ -N):  Equipment: DR-700  Program/Module:	Digits Requir	ed; 0.1 ml;		- Reagen	Filtered:	n: 🔲	
Standard Additions:  Notes:  Nitrite (NO ₂ -N):  Equipment: DR-700  Program/Module:  Concentration:	Digits Requir	ed; 0.1 ml;		- Reagen Standard Solution	Filtered:	n:	· · · · · · · · · · · · · · · · · · ·
Standard Additions:  Notes:  Nitrite (NO2-N):  Equipment: DR-700  Program/Module:  Concentration:	Digits Requir	ed; 0.1 ml;		- Reagen Standard Solution	Filtered:  It Blank Correction  Result	n:	<u></u>
Standard Additions:  Notes:  Nitrite (NO ₂ -N):  Equipment: DR-700  Program/Module:  Concentration: O O  Notes:	DR-89€ 60 013 mg/L	ed; 0.1 ml:		- Reagen Standard Solution	Filtered:  It Blank Correction  Result  Analysis Time	n:	· · · · · · · · · · · · · · · · · · ·
Standard Additions:  Notes:  Nitrite (NO2^-N):  Equipment: DR-700  Program/Module:  Concentration: O  Notes:  Nitrate (NO3^-N):  Equipment: DR-700	DR-8 9 4 60 DR-8	ed; 0.1 ml:		- Reagen Standard Solution	Filtered:  It Blank Correction  Result  Analysis Time	n:	· · · · · · · · · · · · · · · · · · ·
Standard Additions:  Notes:  Nitrite (NO2 -N):  Equipment: DR-700  Program/Module:  Concentration: OR-700  Notes:  Equipment: DR-700  Program/Module:	DR-899 60 013 mg/L  DR-8 55	ed; 0.1 ml:		Reagen Standard Solution	Filtered:  It Blank Correction  Result:  Analysis Time  Filtered:	n:	· · · · · · · · · · · · · · · · · · ·
Standard Additions:  Notes:  Nitrite (NO2 -N): Equipment: DR-700 Program/Module: Concentration: DR-700 Program/Module: Equipment: DR-700 Program/Module: Concentration:	DR-899 60 013 mg/L  DR-8 55	Other:		Reagen Standard Solution	Filtered:  It Blank Correction  Result  Analysis Time  Filtered:	n:	
Standard Additions:  Notes:  Nitrite (NO2 -N):  Equipment: DR-700  Program/Module:  Concentration: OR-700  Notes:  Equipment: DR-700  Program/Module:	DR-899 60 DR-8 55 mg/L  Results	Other:		Reagen Standard Solution	Filtered:  It Blank Correction: Result  Analysis Time Filtered:  ference Treatment Blank Correction	n:	· · · · · · · · · · · · · · · · · · ·



Tetra Tech NUS, Inc. Page of Project Site Name: Sample ID No .: Sample Location: Project No.: Duplicate: Sampled By: Field Analyst: Blank: Field Form Checked as per QA/QC Checklist (initials): SAMPLE COLLECTION/ANALYSIS INFORMATION: Manganese (Mn2+): 1523 DR-700 Equipment: HACH MN-5 Other: DR-8 _ _ Analysis Time: Program/Module: 525nm 41 Filtered: Concentration: mg/L Digestion: Reagent Blank Correction: Standard Solution: Results: Standard Additions: Digits Required: 0.1ml: 0.2ml: 0.3ml: Notes: Ferrous Iron (Fe2+): DR-89# DR-700 IR-18C Color Wheel Other: Analysis Time: 1512 Equipment: Program/Module: 500nm 33 B. P 4 mg/L Concentration: Notes: Hydrogen Sulfide (H2S): Analysis Time: 15 \$ 9 HS-C Other: Equipment: **D.3** mg/L Exceeded 5.0 mg/L range on color chart: Concentration: Notes: QA/QC Checklist: All data fields have been completed as necessary: Correct measurement units are cited in the SAMPLING DATA block: Mulitplication is correct for each Multiplier table: Final calulated concentration is within the appropriate Range Used block: Alkalinity Relationship is determined appropriatly as per manufacturer instructions: QA/QC sample (e.g., Std. Additions, etc.) frequency is appropriate as per the project planning documents: Nitrite Interference treatment used for Nitrate test if Nitrite was detected: Title block is initialized by person who performed the QA/QC Ckecklist:

Page of

195LB030506 Sample ID No.: Project Site Name: Sample Location: Project No.: Sampled By: [] Şurface Soil C.O.C. No.: Subsurface Soil [] Sediment Type of Sample: [] Low Concentration [] Other: [] QA Sample Type: [] High Concentration GRAB SAMPLE DATA: 5/14/99 Date: Depth Color Description (Sand, Silt, Clay, Moisture, etc.) 0922 Time: Method: Monitor Reading (ppm): COMPOSITE SAMPLE DATA: Date: Depth Color Description (Sand, Silt, Clay, Moisture, etc.) Method: Monitor Readings (Range in ppm): SAMPLE COLLECTION INFORMATION: Analysis **Container Requirements** Collected Other **OBSERVATIONS / NOTES:** MAP: Signature(s): Circle if Applicable: **Duplicate ID No.:** MS/MSD

Page___ of ___

Project Site Nam Project No.:  [] Surface So [] Subsurface [] Sediment [] Other: [] QA Sample  GRAB SAMPLE DAT	il Soil Type:	8 str 19 0124	-	[] High C	ample; concentration concentration	30 <b>%</b> -0506 19806 BPH
Date: 5/14/9	79	Depth	Color		(Sand, Silt, Clay, Mo	isture, etc.)
Time: <u>0907</u> Method:		5-6'		Sound		
Monitor Reading (ppm	n): Z	,		177	acoreed	
COMPOSITE SAMPL				,,,		
Date:	Time	Depth	Color	Description	(Sand, Silt, Clay, Mo	isture, etc.)
		2.56.00			(, <b>-</b>	,
Method:	<del>                                       </del>					
Motriou.						
Monitor Readings	<del> </del>			<del>                                       </del>		
(Range in ppm):				<del> </del>		
(Kange in ppin).				<u> </u>		
	L			+		
SAMPLE COLLECTION	ON INFORMA	TION:				
-	Analysis		Container Requ	uirements	Collected	Other
			,	-		
			1			<b>_</b>
						+
_		-				-
		-				-
OBSERVATIONS / N	OTES:			MAP:		•
Circle if Applicable:				Signature(s):		
MS/MSD						

				_	Page	<u>of [</u>
Project Site Nan Project No.:	ne:	Set 19 10124		Sample ID I Sample Loc Sampled By	cation: <u>C<i>NC19</i></u>	8-0405 1808
[] Surface So				C.O.C. No.:		<i></i>
[] Sediment [] Other: [] QA Sample					mple: incentration oncentration	
GRAB SAMPLE DAT	TA:					
Date: 5/14/99		Depth	Color	Description (	(Sand, Silt, Clay, Moi	isture, etc.)
Time: 0350  Method: Monitor Reading (ppn		4-5'	Joh gray	_	sel-chapy	
COMPOSITE SAMPI						
Date:	Time	Depth	Color	Description (	Sand, Silt, Clay, Moi	isture, etc.)
Method:				<del> </del>		
Monitor Readings (Range in ppm):						
SAMPLE COLLECTI	ION INFORMA	TION:				
	Analysis		Container Req	uirements	Collected	Other
_						<del>                                     </del>
-						
			<del> </del>		<u> </u>	<del> </del>
_						
_					<del></del>	<u></u>
				Taran.		
OBSERVATIONS / N	IQTES:			MAP:		
Circle if Applicable:				Signature(s):		
MS/MSD	Duplicate I	D No.:		1		

Project Site Nam Project No.:		8to 19 0124		Sample ID I Sample Loc Sampled By	ration: <u>CNCド</u> ウ: ブル /1	809-0405 1809 38H
[] Surface Soi Subsurface [] Sediment [] Other: [] QA Sample	Soil					
GRAB SAMPLE DATA	A:					
Date: 5/14/99		Depth	Color	Description (	Sand, Silt, Clay, Mo	isture, etc.)
Time: 0435 Method: Monitor Reading (ppm		4-5'	nation to dark groy	Sand, ch	uyez, mois	t
COMPOSITE SAMPL			ŀ	Γ		
Date:	Time	Depth	Color	Description (	Sand, Silt, Clay, Mo	isture, etc.)
Method:						
Monitor Readings (Range in ppm):						
SAMPLE COLLECTION  BTEX PAH	Analysis	TION:	Container Requirements of Encore		Collected	Other
OBSERVATIONS / NO	DTES:			MAP:		
Circle if Applicable:				Signature(s):		
	<b>5</b>			Jagnature(s):		
MS/MSD	Duplicate II 19SL	B09-0405D				

<i>,</i>				<u>.</u>	Pag	e of
Project Site Nan Project No.:	me: -	0/24		Sample ID Sample Lo Sampled E	No.: 19SL	199 - 194 199 - 194
[] Surface So [ Subsurface	oil e Soil			C.O.C. No		
[] Sediment [] Other: [] QA Sample	e Type:				ample: oncentration oncentration	
RAB SAMPLE DAT				_	· • -	
Pate:	T	Depth	Color	Description	(Sand, Silt, Clay, Mo	isture, etc.)
ime:					, , , , , , , , , , ,	,,
lethod:		4-5'				
lonitor Reading (ppr	n):	, ,				
OMPOSITE SAMP	LE DATA:	-	-			
Pate:	Time	Depth	Color	Description	(Sand, Silt, Clay, Mo	isture, etc.)
Method:						
Monitor Readings	1	<u></u> -	 			
Range in ppm):				T		
AMPLE COLLECT		TION:			- C-11-11-1	
	Analysis		Container R	equirements	Collected	Other
		-				
<del></del>		<u></u>	_		-	
			_			
	<del>-</del>				<del>-</del>	
BSERVATIONS / N	IOTES:			MAP:		_
Circle if Applicable:	:			Signature(s):	_	
MS/MSD	Duplicate IC			<b>-</b>		
HOIMOU	Dupincate II	J 11U.,				

Sample ID No.: Project Site Name: Project No.: Sample Location: Sampled By: C.O.C. No.: [] Surface Soil Subsurface Soil [] Sediment Type of Sample: ii Other: [] Low Concentration [] QA Sample Type: ₩High Concentration GRAB SAMPLE DATA: Date: Depth Color Description (Sand, Silt, Clay, Moisture, etc.) Time: 0405 Method: Monitor Reading (ppm): COMPOSITE SAMPLE DATA: Date: Time Description (Sand, Silt, Clay, Moisture, etc.) Color Depth Method: Monitor Readings (Range in ppm): SAMPLE COLLECTION INFORMATION: Collected Other Analysis Container Requirements **OBSERVATIONS / NOTES:** MAP: HEADSPACE 180 pan Circle if Applicable: Signature(s): M. J. Sison MS/MSD **Duplicate ID No.:** 

Sample ID No.: Project Site Name: Sample Location: Project No.: Sampled By: [] Şurface Soil C.O.C. No.: Subsurface Soil [] Sediment Type of Sample: [] Other: [] Low Concentration High Concentration [] QA Sample Type: GRAB SAMPLE DATA: 5-4-09 Description (Sand, Silt, Clay, Moisture, etc.) Date: Depth Color Time: Sordy Silt BLACK 0405 Method: Monitor Reading (ppm): #60-1000 COMPOSITE SAMPLE DATA: Depth Color Description (Sand, Silt, Clay, Moisture, etc.) Method: Monitor Readings (Range in ppm): SAMPLE COLLECTION INFORMATION: **Analysis** Container Requirements Collected Other **OBSERVATIONS / NOTES:** MAP: Circle if Applicable: - A Lisur MS/MSD **Duplicate ID No.:** 

Project Site Name: Sample ID No.: Project No.: Sample Location: Sampled By: C.O.C. No.: [] Surface Soil Subsurface Soil [] Sediment Type of Sample: [] Other: [] Low Concentration [] QA Sample Type: [] High Concentration GRAB SAMPLE DATA: Depth Color Description (Sand, Silt, Clay, Moisture, etc.) Time: silt, moist 21-3' Method: Monitor Reading (ppm): COMPOSITE SAMPLE DATA: Date: Time Depth Color Description (Sand, Silt, Clay, Moisture, etc.) Method: Monitor Readings (Range in ppm): SAMPLE COLLECTION INFORMATION: Analysis Container Requirements Collected Other BIEK PAH OBSERVATIONS / NOTES: MAP: Signature(s): Jonet Booknight Circle if Applicable: MS/MSD **Duplicate ID No.:** 

SOIL & SEDIMENT SAMPLE LOG SHEET

Collection of samples that could not be collection on May 14, 1999

Page 1 of 1

Project Site Na Project No.:	me:	Site 0124	19	Sample ID Sample Lo		1950	B16-0203
[] Surface So				Sampled B C.O.C. No.	y:	<u>J</u>	1516 - C60~
[] Subsurfac [] Sediment [] Other: [] QA Sampl				Type of Sa [] Low Co [] High Co			
GRAB SAMPLE DA	TA:						
Date: 5/17/9		Depth	Color	Description	(Sand, Silt	, Clay, Moi	sture, etc.)
Time: 164	)	, A of		Ì	1		
Method:	- \	$2$ -3 $^{\circ}$ .	br	San	dy 51	1+	
Monitor Reading (ppr COMPOSITE SAMP					1		
Date:	Time	Depth	Color	Description	(Sand, Silt	, Clay, Moi	sture, etc.)
Method:							
Monitor Readings							
(Range in ppm):							
SAMPLE COLLECT	ON INFORMAT	TION:	Container Re	quirements	Colle	ected	Other
TOC			1 402	iar			
Grain size	hydromete	<u> </u>	3.20	zjac			
	·····						
	-						
			-				
OBSERVATIONS / N	OTES:			MAP:			
					- 1		
Circle if Applicable:		-		Signature(s):	Bal	m; /1	
MS/MSD	Duplicate ID	No.:		Signature(s):	ESTAVO.	ngh	

### GROUNDWATER LEVEL MEASUREMENT SHEET

- 3 - 5 - 1 - 1	LERGS	454 953	With the Market Street	19.19.19.19.19.19.19	<b>的对象外对对于他们对</b>	in the second	X TO VISION WE WILL	数を対応を発音。では、
Project Nam	16:		ne G		Project No.:	6 2		
Location:	•	<	ite 18/1	9		Tom /Jasa	n, Par, JE	inte.
			η - 90° <del>-</del>		Measuring De	vice:		
Tidelly Infi	uenced:	Yes	✓ No		Remarks:			
Well or Piezometer Number	Date	Tìme	Elevation of Reference Point (feet)*	Total Well Depth (feet)*	Water Level Indicator Readin (feet)*	Thickness of Free Produc (feet)*	Groundwater Elevation (feet)*	Comments
FOSOIA	9/9	903		12.60	6.05/9.15	3.10		
mwos		JE 14		12.29	4.44	0		
mwol		919		13.45		0		
FESSIS		0920		9.94	4.21	0		
19/mwoz		0922		12.47	415	0		
14mw03		0924		1236	4.337	0		
19mwi4		09.25		13.39	2.87	0		
450501C		5726		12.92	6.00	0		
PD5019		0928		12261	<b>4</b> 6.16	6		
18mmol		0934		11.65		0		
a.gmw3D		<del>03</del> 6		36.30	3.6/	0		
FD861 E		0937		10.19	4.54	0		
19m266		0940		11.80	5.46	Ó		_
18mmor		OPUR		10.45	2.77	9		
								_
				,			<u> </u>	
					/		<u> </u>	_
		<u> </u>			<u></u>	<u> </u>		
* All measurements	to the nearest 0	01 foot	<del>-</del>	•			Page	e of

Page___ of ___

Project Site Name: Project No.:  [] Domestic Well Data		20 M	9/2	site 19	Sample Sample C.O.C. Type of [] Low	а ву:		1\$ 161 umoi
SAMPLING DATA:			<del></del>					<del>-</del>
Date: 7/6/44	Color	pН	s.c.	Temp.	Turbidity	DO	Salinity	Other
Time: 1107	Visual	Standard	mS/cm	Degrees C	NTU	mg/l	%	NA
Method: PURGE DATA:								
Date:	Volume	рН	S.C.	Temp. (C)	Turbidity	00	Salinity	Other
		<del></del>		29.8	62	0.39	Saminy	Other
Method:	Initial	6.69	1.93		— <del>-</del> ——	0.94		
Monitor Reading (ppm):	1	6.73	223	27.4	24			<del>  </del>
Well Casing Diameter & Material	2	6.74	2.25		34	1.2		
Type: Z" PYC	3	6.79	2.19	27.0		0.92	<del></del>	
Total Well Depth (TD): 13,40		1						<del>                                     </del>
Static Water Level (WL): 5.4 2								
One Casing Volume(5a/L): 1, 28								
Start Purge (hrs): \\\phi \  \gamma \  \gamma \		<u> </u>			ļ <u></u> -			
End Purge (hrs): しょっつ		ļ <u>.</u>			<u> </u>			<u> </u>
Total Purge Time (min):	G (t) :		_					
Total Vol. Purged (gal/L): 1,29 代分学 SAMPLE COLLECTION INFORMA								
	TION:	Preser	rativa		Container R	e ouirements		Collected
Analysis		riesei	Taute		Container	equiternanta		Collected
								_
			-					
_								<del>                                     </del>
		-						<del> </del>
			<u> </u>					
		<u> </u>						
OBSERVATIONS / NOTES:								
H10 C.1 2 7.98								
7.98 = .16=1.28								
[ 1, 10 F , 10 F 1,20								
ĭ								
Circle if Applicable:					Signature(s	·)·		
					2.Augments(2	77.		
MS/MSD Duplicate ID No.:	•				1			

1994-m0201

Project Site Name: Project No.:  [] Domestic Well Data     Monitoring Well Data     Other Well Type:     [] QA Sample Type:		one C	) /sit	e 19 	Sample C.O.C. Type of [] Low	Location: d By:		
SAMPLING DATA:								
Date: 8/6/55	Color	pН	s.c.	Temp.	Turbidity	DO	Salinity	Other
Time: 1158	Visual	Standard	mS/cm	Degrees C	NTU	mg/l	%	NA
Method:								<u> </u>
PURGE DATA:			_					_
Date:	Volume	pH	S.C.	Temp. (C)	Turbidity	00	Salinity	Other
Method:	Initial	7,05	5.92	27.0	3	0.27		_
Monitor Reading (ppm):	1	6.93	4.75	25.9	_2	0.14		
Well Casing Diameter & Material	2	6.89	4,53	26.3	2	6.55		
Type: 2 * PVC	3	6.99	4,48	26.2		1.33		
Total Well Depth (TD): 1235							<u> </u>	
Static Water Level (WL): 屮,ユ٩								
One Casing Volume(gal/L): 1.29							_	_
Start Purge (hrs):  0 7		_						
End Purge (hrs): 115g		- · · · · ·						
Total Purge Time (min):		_						
Total Vol. Purged (gal/L):								
SAMPLE COLLECTION INFORMA	TION:						-	
Analysis		Preserv	/ative		Container R	equirements		Collected
				<u> </u>				
					<del></del>		<del>-</del> -	
					-			
				_				
					_			
<del>-</del>								
OBSERVATIONS / NOTES:								
40 Cl = 8.06			_					
8.06 = 16 = 1.29								
8,U4 x 1 1-2 1-4 1								
Circle if Applicable:					Signature(s	·)·		
MS/MSD Duplicate ID No.:					2.91141411 <i>6</i> (9			
Marman Dupitcate to No.:							÷	

Page___ of ___

Project Site Project No.:	4124						Sample ID No.: J CNC19 mwo3 Sample Location 19 GLM 0301 Sampled By:				
Monito Other QA Sa	stic Well Data ring Well Data Well Type: mple Type:						C.O.C. No.: Type of Sample:				
SAMPLING DA	_										
Date: 9191	<i></i>	Color	pН	s.c.	Temp.	Turbidity	DO	Salinity	Other		
Time: 1059		Visual	Standard	mS/cm	Degrees C	NTU	mg/l	%	NA		
Method:) めい	Krow										
PURGE DATA:	· · · · · · · · · · · · · · · · · · ·	<del></del>						<del></del>	<del>                                     </del>		
Date: 9 9	<del></del>	Volume	pН	S.C.	Temp. (C)	Turbidity	DO	Salinity	Other		
Method: ₩		Initial	7.10	3.56	26.7	3	0.73				
Monitor Reading	(ppm): Ocu	1	6.64	3.27		Ч	0.40				
_	meter & Material	2	6.67	3.22	26.3	4	0.40				
Type: 🤰 "	pvc	3	6.64	3.16	26.5	3	0.99	_			
Total Well Depth	(TD): J2.30				_						
Static Water Lev											
	ume(gal/L): 1.42										
Start Purge (hrs											
End Purge (hrs):		1438	<del>                                     </del>				<del> </del>				
Total Purge Time		17.70									
Total Vol. Purge											
_	ECTION INFORMA	TION:	<u> </u>				<u> </u>	l			
	Analysis		Preser	vative		Container F	Requirements	<del>,</del>	Collected		
	POH		0	7		2XI	LIR		2		
						<u></u>					
8	260		140		3	× 40	mu		3		
		<u></u>	1						<u> </u>		
$\Theta$	MON		<u> </u>		\	V 560	mo		<u> </u>		
	- War		1111	,		V. Uh			<del> </del>		
<b></b>	S. METE	<u>.                                    </u>	170	<u> </u>		x 40 m	<u> </u>		_3		
									<del> </del>		
			1						<u> </u>		
			1						<del> </del>		
			<del>}</del>					<del>_</del>	10		
OBSERVATION	IS / NOTES:				<u> </u>		=		+		
Circle if Applica	able:					Signature	<i>\$</i> 7)/\\\	_			
MS/MSD	Duplicate ID No.:				- · · · · · · · · · · · · · · · · · · ·	12/26	240				
							•				

Page_

__ of _

Project Site Name: Project No.:	<u> </u>	zone 9/5ite 19			Sample Sample Sample	ID No.: Location: d Bv:	19GLM CNC19 -	1GLM & 4 B/	
[] Domestic Well Data  Monitoring Well Data [] Other Well Type: [] QA Sample Type:					C.O.C. I Type of [] Low	-			
SAMPLING DATA:			•					_	
Date: -3/6/90	Color	pН	S.C.	Temp.	Turbidity	DO	Salinity	Other	
Time:	Visual	Standard	mS/cm	Degrees C	NTU	mg/l	%	NA	
Method: Law Flow		<u> </u>							
PURGE DATA:									
Date: 8 6 9 9	Volume	pH	S.C.	Temp. (C)	Turbidity	DO	Salinity	Other	
Method: Paristaltic Pump	Initial	1.71	3.14	25.2	6	2.53			
Monitor Reading (ppm):	1	6.72	3.45	20.25 9	20.0	0.60			
Well Casing Diameter & Material	2	6.72	3.55	25.8	13	0.95			
Type: 2" PUC	3	6.72	3.53	26.6	23	0.38			
Total Well Depth (TD): (3,4)	_								
Static Water Level (WL): 2.36									
One Casing Volume@akL): 1.77									
Start Purge (hrs): D/5									
End Purge (hrs):								<u>-</u>	
Total Purge Time (min):				_					
Total Vol. Purged (gal/L): 1.77 1/3	552	_							
SAMPLE COLLECTION INFORMA									
Analysis		Preserv	vative		Container R	equirements		Collected	
						•			
		_							
				_					
								<u> </u>	
		=						<u> </u>	
							<del></del>		
		_				_			
OBSERVATIONS / NOTES:									
400 Cal. = 11.05'									
-									
11.05' = . 126 = 1.77									
All depth.						1			
All mas, from TOC				-	Cichur'-	١.			
Circle if Applicable:					Signature(s	·)·			
MS/MSD Duplicate (D No.:									

Page___ of __

Project No.:  [] Domestic Well Data	CNC Zone G/			He 19	Sample Sample C.O.C.	No.:	ENCIP D.R. A.	MWOS
Monitoring Well Data  Other Well Type:  QA Sample Type:					[] Low	Sample: Concentra Concentra		
SAMPLING DATA:								
Date: 8-10-99	Color	рН	s.c.	Temp.	Turbidity	DO	Salinity	Other
Time: 1208	Visual	Standard	mS/cm	Degrees C	NTU	mg/l	%	NA NA
Method:		<u> </u>						
PURGE DATA:	I	<del> </del>	1 _				_	T
Date: 8-10-99	Volume	pН	S.C.	Temp. (C)	Turbidity	DO	Salinity	Other
Method: Law Flaw	Initial	6.17	3.57	26.7	L	1.43		<del> </del>
Monitor Reading (ppm):	1	6.36	3.84		70	0.69	<u> </u>	
Well Casing Diameter & Material	2	437	4.06	26.9	<u> </u>	9.65		
Type: ZT PYC	3	637	4.21	26.2	0	032		
Total Well Depth (TD): 12.36								
Static Water Level (WL): 359						]		
One Casing Volume(gallL): 1.3		-						
Start Purge (hrs): [[3]						<del> </del>		1
End Purge (hrs): 1264						<u> </u>		1
Total Purge Time (min):								<u> </u>
Total Vol. Purged ( L):								†———
SAMPLE COLLECTION INFORMA	TION:	<u>I</u>	<u> </u>	<u>.                                    </u>	<u> </u>			
Analysis		Preser	vative		Container F	Requirements		Collected
PAH			<u>-</u>		Z *	1 _		
		410		<u> </u>		44.0		<u> </u>
KTEX ( FB)		HC			3 x	40 ~	<u>.C</u>	<del>}</del>
								<del> </del>
								+
								1
								1
					_			1
		<u>L</u>						
OBSERVATIONS / NOTES:								
Greenish (Orange			He	riba Rea	gues - I	Betone 1	After C.	a di houten
material support		8-0.6	યૂખ	4.5	6 8	4 7.3°	١ 27.	G 4.23
40. 11.86		*	3.76	4,4	7 2	س. ه	. u	
_ T-84	-14		}		~	0.68	. <b>4</b>	••
8.47 4	112		1					
Grant of American State	150 133	72			l Cianatura 1	-1.		
Circle if Applicable:	<del></del>				Signature(	s) <del>.</del>		
MS/MSD Duplicate ID No.	:							
	-							

Page_

of

SITE 18 196LM0601 Project Site Name: Sample ID No.: Sample Location: CNC19mw06 Project No.: Sampled By: C.O.C. No.: [] Domestic Well Data Monitoring Well Data Type of Sample: [] Other Well Type: -fictow Concentration [] High Concentration [] QA Sample Type: SAMPLING DATA: Date: Color рΗ S.C. Turbidity DO Salinity Temp. Other Time: Visual Degrees C NTU Standard mS/cm mg/l NA Method: Low GUOV PURGE DATA: Date: 9/9/9 Volume Turbidity DO pН S.C. Temp. (C) Salinity Other 3.66 161 Initial Method: Monitor Reading (ppm): Well Casing Diameter & Material s Z Total Well Depth (TD): Static Water Level (WL): 5.46 One Casing Volume(gal/L): Start Purge (hrs): End Purge (hrs): Total Purge Time (min): Total Vol. Purged (gal/L): SAMPLE COLLECTION INFORMATION: Analysis Preșervative Container Requirements Collected 3x40m/ 9260 HOU 2x 1 LTK AMBER **OBSERVATIONS / NOTES:** Circle if Applicable: Duplicate ID No.: MS/MSD

Page of

SITE 18 19 6124 196L01801 Sample ID No.: Project Site Name: Sample Location: FD301B Project No.: Sampled By: C.O.C. No.: [] Domestic Well Data Monitoring Well Data Type of Sample: Low Concentration
High Concentration [] Other Well Type: [] QA Sample Type: SAMPLING DATA: 979799 Date: ъΗ S.C. Turbidity DO Other Color Temp. Salinity 1040 Time: mS/cm Vigual Standard Degrees C NTU mg/l NA 1.04 Method: Meris Haltic Clear 10.85 30.0 Ø 0.76 PURGE DATA: Date: 9 9 9 9 Volume Нα S.C. Temp. (C) Turbidity DO Salinity Other Method: Car FLOW 0 1.04 31.1 Initial 31.4 **6.8**0 1.05 Ð Monitor Reading (ppm): 0-0-6.86 1.04 0.73 Well Casing Diameter & Material 2 20.0 B " DYC io. 85 9.05 1.04 3 Ð Total Well Depth (TD): Q.QU Static Water Level (WL): 4・入し One Casing Volume(gal/L): 🍳 🕽 Start Purge (hrs): 956 End Purge (hrs): 1034 Total Purge Time (min): 3分かい Total Vol. Purged (gal/L): 3.0 G SAMPLE COLLECTION INFORMATION: Analysis Preservative Container Requirements Collected U.U 3440mC 87.60 METIL 3440mL 74101 500 ml ablaOBSERVATIONS / NOTES: Circle if Applicable: MS/MSD **Duplicate ID No.:** 

Page_

Monito [] Other		<u>S1</u>	TE 18	, 19		Sample Sample Sample C.O.C. Type of Low	<u>C61</u>		
SAMPLING DA	TA.								_
Date: 91919		Color	pН	S.C.	Temp.	Turbidity	DO	Salinity	Other
Time:	1033	Visual	Standard	mS/cm	Degrees C	NTU	mg/l	Samily %	NA NA
	1ista He	C1601	6.77	1.72	25.9	8	1.13	<del></del>	INA.
PURGE DATA:		- 1 ( <u>M.</u>		1.10			. ,,,,		
Date: 9 9 9	9	Volume	рН	s.c.	Temp. (C)	Turbidity	DO	Salinity	Other
Method:	-	Initial	6.73	1,01	27.0	10	0.92	-	
Monitor Reading		1	6.67	1.18	26.2	35	0.61		
	meter & Material	2	6.60	1.52	25.7	17	0.29		<del></del>
	Pyc	3	6.72	1.72	25.9	8	1.13		<del> </del>
Total Well Depti	<u> </u>		<u></u>	176	- > (		' ' /		
Static Water Lev						<del></del>	<u> </u>		<del>                                     </del>
	ume(gal/L): [, ] 0								
Start Purge (hrs				<del></del>					<del>                                     </del>
End Purge (hrs)	<del> </del>							_	<del>                                     </del>
Total Purge Tim		_							<del>  -</del> -
	ed (gal/L): 3,5								 
	ECTION INFORMA	TION:							
	Analysis		Presen	/ative		Container R	equirements		Collected
							•		<del></del>
9	062		Hoc	し	3	7 (10 L	りし		3
-	<del></del>					· / <del>-   1=</del>			
VF	1 17		$\varphi$		يل	VIL	TR		
				_					
	_			_			_		_
	<u> </u>								<del>                                     </del>
				-					
_									<del>                                     </del>
				-					
									1/.5
OBSERVATION	IS / NOTES:								
Circle if Applica	able:				]	Signature(	E A		
MS/MSD	Duplicate ID No.:					1)	N //		

Page___of___

<b>‰</b> Monito [] Other∖		S	012	<del> }</del>   19	) 	Sample ID No.: FOSOID  Sample Location I IGLOIDO  Sampled By: C.O.C. No.:  Type of Sample:  Low Concentration  High Concentration					
SAMPLING DA	TA.										
Date: 9 9 9	<del>\$`</del>	Color	рН	s.c.	Temp.	Turbidity	DO	Salinity	Other		
Time;	1443	Visual	Standard	mS/cm	Degrees C	NTU		-	NA NA		
	erisbilic	C1601	6.98	2.64	27.5	Ø	mg/l 0-87	%	NA		
PURGE DATA:	C11310111 -	<u> </u>	0.10	A.O.	<u>~/·U</u>		0.07				
Date: 9 9 9	<b>Q</b>	Volume	рH	s.c.	Temp. (C)	Turbidity	DO	Salinity	Other		
	Flow		6.83	3.15	27.8	185	0.93	Jannity	Other		
		Initial				8					
Monitor Reading		1	6.91	2.92	28,0		0.76				
Well Casing Dia		2	0.97	2,79	27.4	Ø	80.0				
туре: 2 ″ €	ye	3	6.98	۵, 64	27.5	₽	0.87		<u> </u>		
Total Well Depth	(TD):   <b>ス・</b> Ҷ										
Static Water Lev											
One Casing Volu											
Start Purge (hrs)	,										
End Purge (hrs):					· <del>-</del>		-	<del></del>			
			<del></del>								
Total Purge Time			<del>├</del> ──								
Total Vol. Purge	d (gaVL): 3 ECTION INFORMA	TION.									
	Analysis	TION:	Pręsen			Container P	equirements		Collected		
	2260	<del></del> _	HC			90m	edanienienie		3		
¥	8 (00		ru	<u> </u>					<u> </u>		
	AIF		05		X	ITA			2		
	(~)-		<u> </u>	<del> </del>							
									<u> </u>		
	<del></del>					_	_				
					_	-					
									<u> </u>		
							-				
							-				
									سر		
					<u> </u>				5		
OBSERVATION	S / NOTES:										
<del></del>											
					,			)			
Circle if Applica	able:		-			Signatur (s	<b>作】   ( /</b>		~		
MS/MSD	Duplicate ID No.:					tel					
						•	T .				



Tetra Tech NUS, In	nc.							Page of _	
Project Site N	lame: 5 1	<u>e 19</u>				Sample ID No	1.: 199LM	n4341	
Project No.:	Ø124					Sample Loca	tion: CNC19	7mw43	
Sampled By:	JA/JN	١				Duplicate:			
Field Analyst:	JA/JA	<u> </u>				Blank:			
	hecked as per C	QA/QC Che	cklist (init	lials):		]	_		
				•					
Dete: G C	1 99	Color	ORP (Eh)	s.c.	Temp.	Turbidity	DO	Sal.	pН
Time:		(Visual)	(+/- mv)	(mS/cm)	(°C)	(NTU)	(Meter, mg/l)	(%)	(SU)
Method:		( , ~ u_u_	(////	(,	, .,	(	(1.2.2.2.2.) <u></u>	()	(50)
	TION/ANALYSIS II	NFORMATIO)	V:						
Dissolved Ox	ygen:				,				
·	HACH Digital Titrato	or OX-DT	CHEMetric	s (Range: C	)		Analysis Time:	1421	
	-			` -			•		-
Range Used:	Range	Sample Vol.	Cartridge	Multiplier		Titration Count	Multiplier	Concentration	1
	1-5 mg/L	200 ml	0.200 N	0.01			x 0.01	= mg/L	1
	2-10 mg/L	100 ml	0,200 N	0.02			x 0.02	= mg/L	1
CHEMetrics: . O	5_mg/L				•				•
Notes:									-
Alkalinity:		$\overline{}$					Analysis Time:	13:42	
Equipment: (	HACH Digital Titrato	or Al-DI	CHEMetric	s (Range: _	mg/L)		Filtered:		_
								_	
Range Used:	Range	Sample Vol.	Cartridge	Multiplier	Titra	tion Count	Multiplier	Concentration	]
	10-40 mg/L	100 ml	0.1600 N	0.1		&	x 0.1	= mg/L	
	40-160 mg/L	25 ml	0.1600 N	0.4		&	x 0.4	= mg/L	]
	100-400 mg/L	100 m <u>i</u>	1.600 N	1.0		&	x 1,0	= mg/L	
7	200-800 mg/L	50 ml	1.600 N	2.0	0	8 372	x 2.0	= 544 mg/L	
	500-2000 mg/L	20 ml	1.600 N	5.0		&	x 5.0	= mg/L	
	1000-4000 mg/L	10 ml	1.600 N	10.0		&	x 10,0	= mg/L	]
			_				_		_
	Parameter:	Hydroxide	Cart	onate	Bio	arbonate	]		
	Relationship:	0	),	0		544	]		
CHEMetrics:	mg/L						_		
Notes:									
Standard Additions	: Titran	it Molarity:		Digits Requ	uired: 1st.:	2nd.;	3rd,:		_
Carbon Dioxi	de:	_	-						_
Equipment:	HACH Digital Titrate	or CA-DT	CHEMetric	s (Range: _	mg/L	)	Analysis Time:	14:10	
' '		$\sim$					•		_
Range Used:	Range	Sample Vol.	Cartridge	Multiplier		Titration Count		Concentration	1
	10-50 mg/L	200 ml	0,3636 N	0.1	1		x 0.1	= mg/L	1
	20-100 mg/L	100 mi	0,3636 N	0.2	1		x 0.2	= mg/L	1
	100-400 mg/L	200 ml	3.636 N	1.0	1		x 1.0	= mg/L	1
$\square$	200-1000 mg/L	100 ml	3.636 N	2.0	1	153	x 2.0	= 306 mg/L	7
CHEMetrics:	mg/L	, ***						<u>~ + 11101111</u>	_
Notes:									
Standard Additions	s: Titran	nt Molarity:		Digits Req	uired: 1st.:_	2nd.:	3rd.;		-



Notes:

## FIELD ANALYTICAL LOG SHEET GEOCHEMICAL PARAMETERS

**GEOCHEMICAL PARAMETERS** Tetra Tech NUS, Inc. Page of Project Site Name: Sample ID No.: Sample Location: Project No.: Duplicate: Sampled By: Field Analyst: Blank: Field Form Checked as per QA/QC Checklist (initials): SAMPLE COLLECTION/ANALYSIS INFORMATION: Sulfide (S27): Analysis Time: 13147 DR-8 Equipment: DR-700 **HS-C Color Chart** HS-WR Color Wheel Program/Module: 610nm 93 Other: Concentration: mg/L Filtered: Notes: Sulfate (SO427): Analysis Time: Equipment: DR-700 DR-8__ Other. Program/Module: 91 Filtered: Concentration: mg/L Standard Solution: Results: Digits Required; 0.1ml; 0.2ml; 0.3ml; Standard Additions: Notes: Nitrite (NO₂-N): Analysis Time: DR-8__ Filtered: Equipment: Other: Program/Module: 60 P. \$\$\$ Reagent Bisnk Correction: Concentration: mg/L Standard Solution: Results: Notes: Nitrate (NO₃-N): Analysis Time: Filtered: Equipment: DR-700 DR-8__ Other: Program/Module: Concentration: mg/L Nitrite Interference Treatment: Reagent Blank Correction: Standard Solution: Results: Digits Required: 0.1ml:______ 0.2ml:_____ 0.3ml:___ Standard Additions:



Tetra Tech NUS,	inc.						Page of
Droingt Cita	Name				Comple ID A	la .	
Project Site					Sample ID N		
Project No.:					Sample Loca	ation:	
Sampled By					Duplicate:		
Field Analys					Blank: □		
	Checked as per CTION/ANALYSIS		ecklist (initials):			Secretary and the	and a second and a second and a second as the second
Manganese (	+				eren er er er er er er er er er er er er er		
Equipment:	DR-700	DR-8	HACH MN-5	Other:		_ Analysis Time:	1423
Program/Module:	525nm	41					
Concentration:	0.4	_mg/L				Filtered:	
		_				Digestion:	
Standard Solution	n: 🗆	Results	<b>::</b>		Reagen	Blank Correction	: 🗆
Standard Addition	ns:	Digits Requir	red: 0.1ml: 0	).2ml:	0.3ml:		
Notes:							
Ferrous Iron	(Fe ²⁺ ):				_		
Equipment:	DR-700	DR-8	IR-18C Color Wheel	Other:		_ Analysis Time:	1403
Program/Module:	500nm	33					_
Concentration:	<b>2.</b> 39	_mg/L				Filtered:	
Notes:			<u></u>				
Hydrogen Su	ılfide (H₂S):						2
Equipment:	HS-C	Other:		_		Analysis Time:	1358
	,				_		
Concentration:	0.4	_mg/L	Exceeded 5.0 mg/L r	range on color o	chart:		
Notes:							
QA/QC Chec	klist:	_					
All data fields h	nave been comple	ted as neces	ssary: $\square$	_	_		
Correct measur	rement units are	cited in the S	AMPLING DATA 6	lock:	j		
Mulitplication is	correct for each	Multiplier tal	ble:		_		
Final calulated	concentration is	within the ap	propriate Range Us	sed block:		_	
Alkalinity Relati	<i>ionship</i> is determ	ined appropr	riatly as per manufa	acturer instru	ictions:		
QA/QC sample	e (e.g., Std. Additi	ons, etc.) fre	quency is appropri	ate as per th	e <u>project plann</u>	ing documents:	
Nitrite Interfere	nce treatment us	ed for Nitrate	test if Nitrite was	detected:			
Title block is in	itialized by persor	n who perfor	med the QA/QC Cl	ecklist:			



etra Tech NUS, Ir	nc.							Page of _	
	سا اس	10					م اها	4 4	
Project Site N	lame: S1te					Sample ID No	D.: 9GL3	$P/D\phi$	
Project No.:	412					Sample Loca	tion:		
Sampled By:	JA/JA	^				Duplicate:			ì
Field Analyst	: JA/J	M				Blank:			
Field Form C	hecked as per (	QA/QC Che	cklist (init	ials):	_				
SAMPLING DATA		i prodicti							1 1 2 2
Date: 9	99	Color	ORP (Eh)	s.c.	Temp.	Turbidity	DO	Sal.	рН
Time:		(Visual)	(+/- mv)	(mS/cm)	(°C)	(NTU)	(Meter, mg/l)	(%)	(SU)
Method:		(1222)	(1, 2,	(**************************************	( */	(2.1/2.0)	(4.20004) 116/2/	(2)	(0.0)
	TION/ANALYSIS I	NFORMATIO	N:				I.	I	
Dissolved Ox	vaen:								194094
	HACH Digital Titrato	or OX-DT	CHEMetrica	s (Range: <u>£</u>	>		Analysis Time:	1419	_
Range Used:	Range	Sample Vol.	Cartridge	Multiplier		Titration Count	Multiplier	Concentration	
	1-5 mg/L	200 ml	0.200 N	0.01			x 0.01	= mg/L	
	2-10 mg/L	100 ml	0.200 N	0.02			x 0.02	= mg/L	
CHEMetrics: 0	mg/L								-1
Notes:	,					-	-	-	-
Alkalinity:		~~~					Analysis Time:	3:36	-
Equipment:	HACH Digital Titrato	or AL-DT	CHEMetrics	s (Range: _	mg/L)		Filtered:		
Range Used:	Range	Sample Vol.	Cartridge	Multiplier	Titra	tion Count	Multiplier	Concentration	1
	10-40 mg/L	100 ml	0.1600 N	0.1		8	x 0.1	= mg/L	
	40-160 mg/L	25 ml	0.1600 N	0.4		8.	x 0.4	= mg/L	
	100-400 mg/L	100 mi	1.600 N	1.0		8.	x 1.0	= mg/L	1
	200-800 mg/L	50 ml	1.600 N	2.0	0	e 275	x 2.0	= 550 mg/L	1
	500-2000 mg/L	20 ml	1.600 N	5.0		8.	x 5.0	= mg/L	
	1000-4000 mg/L	10 ml	1.600 N	10.0		&	x 10.0	= mg/L	
	· · · · ·				<del></del>			<u> </u>	7
	Parameter.	Hydroxide	Carb	onate	Bio	arbonate	1		
	Relationship:	0	0	•		750	1		
CHEMetrics:	mg/L	<u> </u>			1	_	_		
Notes:	•								
Standard Additions	s: Titran	nt Molarity:		Digits Req	uired; 1st.:	2nd.;	3rd,;		-
Carbon Dioxi	<del>-</del>				_				
Equipment:	HACH Digital Titrat	of CA-DI	CHEMetric	s (Range:_	mg/L	)	Anal <del>ysis</del> Time:	73:54	_
Range Used:	Range	Sample Vol.	Cartridge	Multiplier	1	Titration Count	T	Concentration	7
	10-50 mg/L	200 ml	0.3636 N	0.1	1		x 0.1	= mg/L	1
	20-100 mg/L	100 ml	0.3636 N	0.2	1		x 0.2	= mg/L	1
<u> </u>	100-400 mg/L	200 ml	3.636 N	1.0	1	322	x 1,0	= 322 mg/L	1
	200-1000 mg/L	100 ml	3.636 N	2.0	1		x 2.0	≠ mg/L	1
CHEMetrics:	mg/L				4				-
Notes:	··· <del>y</del> · -								
Standard Additions	s: Titrar	nt Molarity:		Digits Red	uired: 1st.:	2nd.:	3rd,;	_	-



Tetra Tech NUS,	inc.						Page of
 	Nie an				Comple ID A	lo .	
Project Site		<del> </del>			Sample ID N		
Project No.:					Sample Local	ation:	
Sampled By					Duplicate:		
Field Analys		0.1/0.0.01			Blank:	ليا	
			ecklist (initials):				
Sulfide (S ² ):	1.000						
Equipment:	DR-700	DR-84Φ	HS-C Color Chart	HS-WR Col	or Wheel	Analysis Time	: 1348
Program/Module:	_	93	110-0 COIOI CILIIN	Other:	or vince:	Analysis nine	. 13 18
Program/Module;	6 I Unm	90		Other:		_	
Concentration:	0.48	mg/L				Fittered:	
Notes:						i illered.	L
Notes.							
Sulfate (S0 ₄ ²	<u>ጉ:</u>			· <b></b> -			
Equipment:	DR-700	DR-8	Other:			Analysis Time	•
Program/Module:		91			_	,	· <del></del>
Concentration:		mg/L				Filtered:	
CORCERNIATION.		g.r				i ilicicu.	_
Standard Solution	, []	Results					
Standard Addition			· ed: 0,1ml: (	) 2ml·	0.3ml·		
Notes:		- igito ( toqui			. 0.0	•	
THOLOS.							
Nitrite (NO ₂ -		· .				Analysis Time	: 1444
Equipment:	DR-700	DR-8	Other:			Fixered:	
Program/Module:		60			_		<del></del>
Concentration:	0.036	mg/L			Reagen	it Blank Correctio	n: 🗆
					-	n: Result	
Notes:							·. <del></del>
140(63.							
Nitrate (NO ₃	-N):					Analysis Time	);
Equipment:	DR-700	DR-8	Other:			Fittered:	
Program/Module:		55			_		
Concentration:		mg/L					
					Nitrite Inter	ference Treatmer	nt: 🗀
Standard Solution	n: 🗆	Results	i.			nt Blank Correction	_
Standard Addition			<del></del>	0.2ml:	0.3ml:		····
Notes:		Digito Heddii	v			-	
10,65.	-						



Tetra Tech NUS, Inc.					Page of
1					
Project Site Name:			Sample ID N		
Project No.:			Sample Loc	ation:	
Sampled By:			Duplicate:		
Field Analyst:			Blank:		
Field Form Checked as per					
SAMPLE COLLECTION/ANALYSIS	INFORMATION:				
Manganese (Mn ²⁺ ):					
Equipment: DR-700	DR-8 HACH MN-5	Other:		_ Analysis Time:	1421
Program/Module: 525nm	41				
Concentration: 0.5	_mg/L .			Filtered;	
_				Digestion:	
Standard Solution:	Results:		Reagen	t Blank Correction	. 🗆
Standard Additions:	Digits Required: 0.1ml:	0.2ml:	_0.3ml:		·
Notes:					
Ferrous Iron (Fe ²⁺ ):					
Equipment: DR-700	DR-8 IR-18C Color Whee	el Other:		_ Analysis Time:	1462
Program/Module: 500nm	33				
Concentration: U-37	_mg/L			Finered;	
Notes:					
Hydrogen Sulfide (H ₂ S):					
Equipment: HS-C	Other:			Analysis Time:	1343
				•	
Concentration: d. 1	mg/L Exceeded 5.0 mg/L	, range on color (	chart:		
Notes:					
			<del></del> <del>.'</del>		
QA/QC Checklist:					
All data fields have been comple	eted as necessary:				
Correct measurement units are	_	block.	1		
Mulitplication is correct for each		DIOUR	-1		
Final calulated concentration is	•	lsed block:			
			ertions:	П	
Alkalinity Relationship is determ	,				. 🗂
QA/QC sample (e.g., Std. Additi	, , ,	•	e project plant	ung aocuments	
Nitrite Interference treatment us					
Title block is initialized by person	n wno performed the QA/QC C	Kecklist:	<u> </u>		

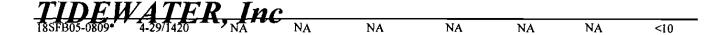
### **APPENDIX D**

SOIL AND GROUNDWATER LABORATORY ANALYTICAL DATA

### TIDEWATER, Inc

### Zone G Master Report

Client Name: Tetra Tech NUS


Analysis: EPA Method 8021B: BTEX, Napthalene

EPA Method 8015M: TPH-DRO

Matrix: Soil

### **Analytical Services for Charleston Naval Complex Project**

Dugudiénéina Limié		Benzene	Toluene	Ethylbenzene	m,p-Xylene	o-Xylene	Napthalene	DRO
Quantitation Limit		5.0 μg/kg	5.0 μg/kg	5.0 μg/kg	5.0 µg/kg	5.0 μg/kg	5.0 μg/kg	10 mg/kg
Sample ID	Date/Time	(μg/kg)	(μg/kg)	(μg/kg)	(μg/kg)	(μg/kg)	(µg/kg)	(mg/kg)
16SFB01-0304	4-30/0840	<5,0	<5.0	17	<5.0	53	510	33
16SFB01-0304*	4-30/0840	<5.0	<5.0	6.3	8.0	35	480	NA
16SFB02-0304	4-30/1000	<5.0	<5.0	<5.0	15	<5.0	19000	270
16SFB03-0304	4-30/1050	<5.0	<5.0	<5.0	<5.0	<5.0	64	44
16SFB04-0304	4-30/1130	34	20	320	410	1700	39000	360
16SFB05-0203	4-30/1215	<5.0	<5.0	<5.0	<5.0	<5.0	3800	<10
16SFB06-0304	5-01/1215	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
16SFB07-0304	5-01/1300	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	19
16SFB08-0304	5-01/1330	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
16SFB09-0304	5-01/1400	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
16SFB10-0304	5-01/1430	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
16SFB11-0304	5-02/0910	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
16SFB14-0304	5-03/0840	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
16SFB14-0304*	5-03/0840	NA	NA	NA	NA	NA	NA	<10
17SFB01-0708	5-02/1300	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
17SFB02-0809	5-02/1450	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
17SFB03-0506	5-02/1515	<5.0	<5.0	34	<5.0	16	17000	1200
17SFB04-0304	5-02/1550	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
17SFB05-0708	5-02/1635	<5.0	<5.0	<5.0	<5.0	<5.0	330	57
17SFB06-0910	5-03/1110	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
17SFB07-0910	5-03/1155	<5.0	<5.0	<5.0	<5.0	<5.0	140	<10
17SFB07-0910*	5-03/1155	<5.0	<5.0	<5.0	<5.0	<5.0	170	NA
17SFB08-1011	5-03/1345	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
17SFB09-1011	5-03/1440	<5.0	<5.0	<5.0	<5.0	<5.0	1100	130
18SFB01-03	4-27/1010	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
18SFB02-0405	4-29/0845	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
18SFB03-0405	4-29/1430	<5.0	<5.0	<5.0	<5.0	<5.0	29	<10
18SFB04-0405	4-29/1345	<5.0	<5.0	<5.0	<5.0	9.6	13	<10
8851-13005e(1889 Suite Columbia, MD 21045	14029/1420	<5.0		Mobile and Fixed aboratory Services	<5.0	<5.0		ie: (41 <b>2)9</b> 97-44 x: (410) 997-87



Quantitation Lim	it	Benzene 5.0 µg/kg	Toluene 5.0 μg/kg	Ethylbenzene 5.0 μg/kg	m,p-Xylene 5.0 µg/kg	o-Xylene 5.0 μg/kg	Napthalene 5.0 μg/kg	DRO 10 mg/kg
Sample ID	Date/Time	(µg/kg)	(μg/kg)	(μg/kg)	(µg/kg)	(μg/kg)	(μg/kg)	(mg/kg)
19SFB02-0406	4-27/0950	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
19SFB03-0507	4-27/1430	<5.0	<5.0	<5.0	<5.0	<5.0	170	<10
19SFB04-0304	4-27/1500	<5.û	<5.0	<5.0	<5.0	<5.0	<5.0	<10
19SFB05-0405	4-27/1530	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
19SFB06-0506	4-28/0900	<5.0	<5.0	<5.0	<5.0	<5.0	93	55
19SFB08-0506	4-29/1040	<5.0	<5.0	<5.0	<5.0	5.6	460	<10
19SFB08-0506*	4-29/1040	NA	NA	NA	NA	NA	NA	<10
19SFB09-0405	4-29/1100	<5.0	<5.0	<5.0	<5.0	<5.0	620	140
19SFB10-0405	4-29/1130	<5.0	<5.0	<5.0	<5.0	<5.0	460	44
19SFB11-0405	4-30/0930	<5.0	<5.0	<5.0	<5.0	<5.0	700	300
19SFB12-0304	5-01/1043	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
19SFB13-0405	5-01/1144	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	22
19SFB14-0203	5-02/0935	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
19SFB15-0203	5-02/1020	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	16
19SFB15-0203*	5-02/1020	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA
19SFB16-0203	5-02/1240	<5.0	<5.0	<5.0	<5.0	<5.0	1300	150
19SFB16-0203*	5-02/1240	NA	NA	NA	NA	NA	NA	176
19SFB17-0405	5-04/0800	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	23
19SFB17-0405*	5-04/0800	NA	NA	NA	NA	NA	NA	24
19SFB18-0304	5-04/0855	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
19SFB18-0304*	5-04/0855	<5.0	<5,0	<5.0	<5.0	<5.0	<5.0	NA
19SFB19-0304	5-04/0940	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
19SFB20-0304	5-04/1010	<5.0	<5.0	<5.0	<5.0	<5.0	27	<10
19SFB21-0304	5-04/1045	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
19SFB22-0304	5-04/1115	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10

Note: µg/L denotes parts per billion (ppb) mg/L denotes parts per million (ppm)

^{*} indicates laboratory duplicate
NA indicates No Analysis was performed

### TIDEWATER, Inc

Quantitation I	-imit	Benzene 1.0 μg/L	Toluene 1.0 μg/L	Ethylbenzene 1.0 μg/L	m,p-Xylene 1.0 μg/L	o-Xylene 1.0 μg/L	Napthalene 1.0 µg/L	DRO 0.1 mg/L
_ Sample ID	Date/Time	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/L)
18GFB01-06	4-28/0900	<1.0	<1.0	<1,0	<1.0	<1.0	<1.0	0.1
18GFB02-12	4-29/0850	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.1
18GFB02-12*	4-29/0850	NA	NA	NA	NA	NA	NA	<0.1
18GFB03-08	5-04/1320	<1.0	<1.0	<1.0	<1.0	<1.0	23	NA
18GFB04-09	5-04/1545	<1.0	<1.0	<1.0	<1,0	<1.0	10	0.4
18GFB05-12	4-29/1430	<1.0	<1.0	<1.0	<1.0	<1.0	6.4	NA
19GFB02-08	4-27/1030	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	0.1
19GFB03-08	4-27/1430	<1.0	<1.0	<1.0	1.8	1.3	120	3.4
19GFB04-08	4-27/1515	<1.0	<1.0	<1.0	<1.0	<1.0	5.8	0.8
19GFB05-08	4-27/1535	<1.0	<1.0	<1.0	<1.0	<1.0	** 3.1	0.7
19GFB06-08	4-28/0910	<1.0	<1.0	1.8	<1.0	<1.0	14	0.5
19GFB07-08	4-28/1000	<1.0	<1.0	<1.0	<1.0	<1.0	35	0.4
19GFB09-09	4-29/1110	<1.0	<1.0	<1.0	1.3	<b>/1.0</b>	130	1.6
19GFB10-10	4-29/1140	<1.0	<1.0	<1.0	<1.0	<1.0	22	6.0
19GFB11-07	4-30/1015	1.5	<1.0	<1.0	<1.0	<1.0	450	1.4
19GFB12-07	5-01/1105	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	0,2
19GFB13-07	5-01/1158	6.5	<1.0	<1.0	1.6	1.3	1900	27
19GFB13-07*	5-01/1158	· NA	NA	ŊA	NA .	NA	NA NA	27
19GFB14-09	5-02/0950	<1.0	<1.0	<1.0	<1.0	<1.0	15	0.8
19GFB14-09*	5-02/0950	<1.0	<1.0	<1.0	<1.0	<1.0	7.9	NA
19GFB15-07	5-02/1030	<1.0	×1.0	<1.0	<1.0	<1.0	<1.0	0.3
19GFB16-07	5-04/1135	32 /	<1.0	4.2	3.7	1	1400	2.9
19GFB17-11	5-04/0825	5×1.0	<1.0	<1.0	<1.0	<1.0	<1.0	0.3
19GFB18-09	5-04/0910 _	<1.0	<1.0	<1.0	<1.0	<1.0	6.2	0.1
19GFB19-09	5-04/0950	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.1
19GFB20-09	5-84/1020	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	0.1
19GFB21-09	5-04/1055	3.1,	<1.0	<1.0	1.9	<1.0	1600	5.6
19GFB22-09	5-04/1130	1.5	<1.0	<1.0	<1.0	<1.0	28	1.2
19GFB22-09*	5-04/1130	3.3	<1.0	<1.0	<1.0	<1.0	44	1.1

Note:  $\mu g/L$  denotes parts per billion (ppb)

mg/L denotes parts per million (ppm)

* indicates laboratory duplicate

NA indicates No Analysis was performed

Phone: (410) 997-4458 Fax: (410) 997-8713



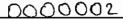
# SDG NARRATIVE KATAHDIN ANALYTICAL SERVICES TETRA TECH NUS CASE CNC CHARLESTON, SC CTO #68

### Sample Receipt

The following samples were received on May 4 and 5, 1999 and were logged in under Katahdin Analytical Services work order numbers WP2300 and WP2356 for a hardcopy due date of June 4, 1999.

KATAHDIN	TETRA TECH	GEL
Sample No.	Sample Identification	Sample No.
WP2300-1	19TL00101	
WP2300-2	19SLB11-0405	
WP2300-3	18SLB03-0405	
✓ WP2300-4	18SLB04-0405	
WP2300-5	19SLB10-0405	
√ WP2356-1	18SLB04-0405	9905110-01
√ WP2356-2	18SLB03-0405	9905110-02
WP2356-3	19SLB11-0405	9905110-03

The samples were logged in for the analyses specified on the chain of custody form. All problems encountered and resolved during sample receipt have been documented on the applicable chain of custody forms.


Sample analyses have been performed by the methods as noted herein.

#### Volatile Organic Analysis

One aqueous (trip blank) and four soil/sediment samples were received by the Katahdin Analytical Services, Inc. GC/MS laboratory on May 5, 1999 and were specified to be analyzed by USEPA method 8260B for the analytes benzene, toluene, ethylbenzene, xylenes, MTBE, naphthalene, and EDB.

Analyses for this SDG were performed on instruments 5972-S (low level soil) and 5972-Z (aqueous/medium level soil). A VSTD050 (50 ppb standard) was used for the continuing calibration standard. Internal standard and surrogate compounds were also spiked at 50 ug/l.

Batch QC (VBLK, and LCS) was performed in each twelve hour window. Results are included in this data package. The LCS QC samples were spiked with the entire list of compounds





quantitated for at 50 ppb. No matrix spike/matrix spike duplicate pair was analyzed on any of the samples in this workorder.

Method 8000B, section 7.5.1.2.1 (Revision 2, 12/96) states, "in those instances where the RSD for one or more analytes exceeds 20%, the initial calibration curve may still be acceptable if the mean of the RSD values for all analytes in the calibration is less than or equal to 20%." Method 8260B narrows this 20% maximum to 15%.

In the calibration curves analyzed in this SDG, several analytes had %RSD values exceeding the allowed 15%. Since the average %RSD for all analytes was 8.7%, 14.5%, and 12.6%, the curves were acceptable.

Initial analysis of sample WP2300-2 following low level protocols yielded a concentration of naphthalene over the upper limit of the calibration curve. Reanalysis occurred following medium level protocols. Both sets of data for this sample are included in the data package.

Initial analysis of sample WP2300-3 following low level protocols was performed thirty-five minutes outside of the twelve hour BFB tuning window. Reanalysis yielded internal standard and surrogate recovery deviations. Due to insufficient sample, a third analysis could not be performed. Both sets of data for this sample are included in this data package.

Initial analysis of sample WP2300-4 yielded surrogate recovery deviations. Reanalysis yielded internal standard area recovery deviations, confirming matrix interference. Both sets of data for this sample are included in this data package.

Sample WP2300-5 was analyzed following medium level protocols only due to the matrix and high concentrations of target analytes, resulting in elevated reporting limits.

Several manual integrations were performed due to split peaks; all have been flagged with a "M" (software-generated) on the pertinent quantitation reports. All "M" flags have been dated and initialed by the analyst performing the integration. In addition, all "M" flags have been reviewed and approved by the GC/MS supervisor. Copies of each manual integration are included in the pertinent quantitation reports.

No other protocol deviations were noted by the volatile organics staff.

### Semivolatile Organic Analysis

Four soil/sediment samples were received by the Katahdin GC/MS laboratory on May 5, 1999 for analysis for the TCL list of analytes in accordance with USEPA method 8270B.

The soil samples were extracted following USEPA method 3550 on May 18, 1999. A laboratory control spike, consisting of all TCL analytes spiked into an aliquot of organic free sand, was extracted in the batch. No matrix spike/matrix spike duplicate pair was extracted on the sample in this workorder.



The initial calibration curves analyzed in this SDG had some of the target analyte %RSD values exceeding 15 %.

Method 8000B, section 7.5.1.2.1 (Revision 2, 12/96) states, "in those instances where the RSD for one or more analytes exceeds 20%, the initial calibration curve may still be acceptable if the mean of the RSD values for all analytes in the calibration is less than or equal to 20%." Section 7.3.7.1 of method 8270C (revision 3, 12/96) narrows this 20% maximum to 15%.

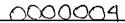
In the calibration curves analyzed in this SDG, the average %RSD for all analytes was 9.2% and 11.4%, making the curves acceptable.

Initial analysis of sample WP2300-2 yielded internal standard area recovery deviations. Reanalysis yielded similar results, confirming matrix interference. Both sets of data are included in this data package.

Initial analysis of sample WP2300-5 yielded internal standard area recovery deviations and a high recovery of the surrogate nitrobenzene-d5. Reanalysis also yielded internal standard area recovery deviations, confirming matrix interference. Both sets of data are included in this data package.

Several manual integrations were performed due to split peaks; all have been flagged with a "M" by the data system. All manual integrations have been dated and initialed by the responsible analyst. Copies of each manual integration are included in the data package. All manual integrations have been reviewed and approved by the GC/MS supervisor.

No other protocol deviations were noted by the semivolatiles organics staff.


#### Metals Analysis

The samples of Katahdin Work Order WP2300 were prepared and analyzed for metals in accordance with the "Test Methods for Evaluating Solid Waste", SW-846, November 1986, Third Edition.

Inductively-Coupled Plasma (ICP) Atomic Emission Spectroscopic Analysis

Solid-matrix Katahdin Sample Nos. WP2300-(2-4) were digested for ICP analysis on 06/01/99 (QC Batch PF0IICS0) in accordance with USEPA Method 3050B.

ICP analyses of Katahdin Work Order WP2300 sample digestates were performed in accordance with USEPA Method 6010B, using a Thermo Jarrell Ash (TJA) Trace ICP spectrometer and a TJA 61 ICP spectrometer. All samples were analyzed within holding times and all QC criteria were met with the following comments or exceptions:





Some of the results for run QC samples (ICV, ICB, CCV, CCB, ICSA, and ICSAB) included in the accompanying data package may have exceeded acceptance limits for some elements. Please note that all client samples and batch QC samples associated with out-of-control results for run QC samples were subsequently reanalyzed for the analytes in question.

#### Analysis of Mercury by Cold Vapor Atomic Absorption (CVAA)

Solid-matrix Katahdin Sample Nos. WP2300-(2-4) were digested for mercury analysis on 05/27/99 (QC Batch PE27HGS0) in accordance with USEPA Method 7471A. Katahdin Sample No. WP2300-2 was prepared in duplicate and with a matrix-spiked aliquot.

Mercury analyses of Katahdin Work Order WP2300 sample digestates were performed using a Leeman Labs PS200 automated mercury analyzer. All samples were analyzed within holding times and all run QC criteria were met, with the following comments:

During mercury Run DPE27A, performed on 05/27/99, the instrument automatically recalibrated after the failure of the CCV analyzed at 12:54. This did not affect the analyses of WP2300 samples, which were bracketed by passing run QC samples.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager and/or his designee, as verified by the following signature.

Hara Croud Authorized Signature 07/03/99

KATAHDIN ANALYTICAL SERVICES SAMPLE RECEIPT CONDITION REP Tel. (207) 874-2400				LAB (WORK ORDER) #         WP 2300           PAGE:         OF
Fax (207) 775-4029				COOLER: \ OF \
				COOLER: [ OF [
				COC#
CLIENT: TETRATECH		_		SDG#
				DATE / TIME RECEIVED: 05/05/99 1110
				DELIVERED BY: Fed Ex  RECEIVED BY: Saw
PROJECT: CNC Charles	ton			RECEIVED BY: Sour
1100001.				LIMS REVIEW BY / PM: ATC
	٧٥٥	NO	EVEEDTIONS	COUNTY TO
	YES	NO	EXCEPTIONS	COMMENTS RESOLUTION
1. CUSTODY SEALS PRESENT / INTACT?				
2.CHAIN OF CUSTODY PRESENT IN THIS COOLER?				
3. CHAIN OF CUSTODY SIGNED BY CLIENT?	<b>a</b>			
4. CHAIN OF CUSTODY MATCHES SAMPLES?				
5. TEMPERATURE BLANKS PRESENT?				TEMP BLANK TEMP (°C)= 0,7 by fax
6. SAMPLES RECEIVED AT 4°Q.±/- 2?		Ø		COOLER TEMP (°C )≈
(ICE PICE PACKS PRESENT Y N?	_	_	_	(RECORD COOLER TEMP ONLY IF TEMP BLANK IS NOT PRESENT)
7. VOLATILES FREE OF HEADSPACE?				
8. TRIP BLANK PRESENT IN THIS COOLER				
9. PROPER SAMPLE CONTAINERS AND VOLUME?				
10. SAMPLES WITHIN HOLD TIME UPON RECEIPT?				
11. SAMPLES PROPERLY PRESERVED ⁽¹⁾ ?	Q			
12. CORRECTIVE ACTION REPORT FILED?			N/A	
13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMM	MERCIAL	CLP HA	ZWRAP NFESC	ACOE AFCEE OTHER (STATE OF ORIGIN):
LOG - IN NOTES ⁽¹⁾ :	,			•
Tempout of range - was		101	when he	re ofice
1 lemp out of karger - was	$\omega^{r}$	7		

Use this space (and additional sheets if necessary) to document samples that are received broken or compromised, C-O-C discrepancies, radiation checks, residual chlorine check, results of pH check if required. If samples required pH adjustment, record volume and type of preservative added.

# RO. Box 720 Westbrook, ME 04098 Tel: (207) 874-2400 Fax: (207) 775-4029

### **CHAIN of CUSTODY**

Fax:	Fax: (207) 775-4029						PLEASE PRINT IN PEN Page of							
Tetra Tech	NUS		BRY,	n Ho	WZĒ		Phone # <b>423</b> )	483 -	-9900	O (	k# )			
NH-21 A1		City	1.4	HARLE	EST ON	V s	itate Sc	<u></u>		Zip Code	e 294	<i>85</i>		
urchase Order #	Pro	j. Name / N	No.						Katahdir	n Quote	#			
ill (if different than above)	4		Ac	ddress										
	Sisco /	11.4	?. L12	;co				Copie	es To:					
AB USE ONLY WORK ORDE	<del></del>					£	ANALYSI I		'ONTAIN VATIVES		E			
	ROJECT MANAGER			Filt.	Filt.		Filt. □Y□N	Filt. OYON	Filt. OYON	Filt.	Filt. IOYON	Filt.		
EMARKS:	<del>-</del>			x 9	:	82608	,			:	i		ચુ	
HIPPING INFO: D FED EX	☐ UPS	O CHE	NT	+140ph.	THAME tals bolo B	200			:		:		) headspace	
EMP°C O TEMP BLAN	NK D INTACT	□ мот	INTACT	1	Met	XS		:					he y	
Sample Description	Date / Time coll'd	Matrix	No. of Cntrs.	PAH's	TAK.	BTEX EV-CORE		: 			:	:	E	
197200101	5-3 /1515	W	2											
19SLB11-0405	5-4/1330	S	6	X	X	X							400	
199LB10-0405	5-4/1415	S	5	X		X							180	
1851803-0405	5-4/1500	S	6	X	X	X							3	
32BO4-0405	5-4/1600	S	6	X	X	X							20	
	/													
	/													
_	/													
	/													
	/													
_	/			1										
	/													
	/						-							
	/		+	<del>                                     </del>	1							<del> </del>		
	//				†						-		_	
			1	†	<del>                                     </del>						1		1	
MMENTS									L			<u> </u>		
1/m1 //.	ate / Time Rece	ived By: (S	Signature	e) 99 F	Relinquis	hed By: (	Signature	;) Da	ate / Ti	me F	Received	By: (Sig	inature)	
<u> </u>	elinquished By: (Signature)  Date / Time Received By: (  5-4/830  Slinquished By: (Signature)  Date / Time Received By: (				 Relinquis	 hed <b>By</b> : (	Signature	ature) Date / Time Received By: (Signat			jnature)			
					· 					_				
l l	1			1						1				



### KATAHDIN ANALYTICAL SERVICES **REPORT OF ANALYTICAL RESULTS**

Client:

Arnold Lamb

Tetra Tech NUS 794 South Military Trail

Deerfield Beach, FL 33442

Proj. ID: CNC CHARLESTON

Lab Number:

WP2300-3

SDG:

WP2300

Report Date:

6/9/99 N7912-P99264

PO No.: Project:

CTO #68

% Solids:

Method: Date Analyzed: 5/13/99

SW8260

Sample Description	Matrix	Samp	led Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
18SLB03-0405	SL 5		4/99	5/5/99	5/13/99	кмс	5035	KMC
Compound	Re	sult	Units	DF	Sample PQL	Method PQL		
BENZENE		<6	ug/Kg	1.2	6	5		
TOLUENE	•	<6	ug/Kg	1,2	6	5		
1,2-DIBROMOETHANE	•	<6	ug/Kg	1,2	6	5		
ETHYLBENZENE	•	<6	ug/Kg	1.2	6	5		
NAPHTHALENE		J <b>5</b>	ug/Kg	1.2	6	5		
MTBE		<6	ug/Kg	1.2	6	5		
TOTAL XYLENES		<6	ug/Kg	1.2	6	5		
DIBROMOFLUOROMETHANE	1	16	%	1,2				
1,2-DICHLOROETHANE-D4	1	06	%	1.2				
TOLUENE-D8	1	14	%	1.2				
P-BROMOFLUOROBENZENE	1	23	%	1.2				

J,Analyzed outside of 12 hr BFB window by 35 minutes **Report Notes:** 



### KATAHDIN ANALYTICAL SERVICES **REPORT OF ANALYTICAL RESULTS**

Client:

Arnold Lamb

Tetra Tech NUS

794 South Military Trail

Deerfield Beach, FL 33442

Proj. ID: CNC CHARLESTON

Lab Number:

WP2300-3RA

SDG:

WP2300

Report Date:

6/9/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

89

Method:

SW8260

Date Analyzed: 5/14/99

Sample Description	Matrix	Sampl	ed Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
18SLB03-0405	SL 5		1/99	5/5/99	5/14/99	KMC	5035	KMC
	Re	sult	Units	DF	Sample PQL	Method PQL		
BENZENE	•	 <5	ug/Kg	0.92	5	5		_
TOLUENE	•	<5	ug/Kg	0.92	5	5		
1,2-DIBROMOETHANE	•	<5	ug/Kg	0.92	5	5		
ETHYLBENZENE	•	<5	ug/Kg	0.92	5	5		
NAPHTHALENE	•	<5	ug/Kg	0.92	5	5		
MTBE	•	<5	ug/Kg	0.92	5	5		
TOTAL XYLENES	•	<5	ug/Kg	0.92	5	5		
DIBROMOFLUOROMETHANE	1	05	%	0.92				
1,2-DICHLOROETHANE-D4	1	00	%	0.92				
LUENE-D8	\$	<b>6</b> 8	%	0.92				
, -BROMOFLUOROBENZENE	\$	51	%	0.92				

ort Notes:

\$, O-13



Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2300-3

SDG:

WP2300

Report Date:

6/30/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

Method:

Date Analyzed:

EPA 8270 6/25/99

Sample Description	Matrix S	ampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
18SLB03-0405	SL	5/4/99	5/5/99	5/18/99	GST	SW3550	sw
	D		D.F.	Sample	Method		
Compound	Resul	t Units	DF	PQL	PQL		
NAPHTHALENE	<360	ug/Kg	1.1	360	330		
2-METHYLNAPHTHALENE	<360	ug/Kg	1.1	360	330		
ACENAPHTHYLENE	<360	ug/Kg	1.1	360	330		
ACENAPHTHENE	<360	ug/Kg	1.1	360	330		
FLUORENE	<360	ug/Kg	1.1	360	330		
PHENANTHRENE	<360	ug/Kg	1.1	360	330		
ANTHRACENE	<360	ug/Kg	1.1	360	330		
FLUORANTHENE	<360	ug/Kg	1.1	360	330		
PYRENE	<360	ug/Kg	1.1	360	330		
BENZO(A)ANTHRACENE	<360	ug/Kg	1.1	360	330		
CHRYSENE	<360	ug/Kg	1.1	360	330		
BENZO(BJFLUORANTHENE	<360	ug/Kg	1.1	360	330		
BENZO(K)FLUORANTHENE	<360	ug/Kg	1.1	360	330		
BENZOJA]PYRENE	<360	ug/Kg	1.1	360	330		
NDENO[1,2,3-CD]PYRENE	<360	ug/Kg	1.1	360	330		
DIBENZ(A,H)ANTHRACENE	<360	ug/Kg	1,1	360	330		
BENZO(G,H,I]PERYLENE	<360	ug/Kg	1,1	360	330		
NITROBENZENE-05	68	%	1.1				
2-FLUOROBIPHENYL	68	%	1.1				
TERPHENYL-D14	108	%	1.1				

Report Notes:

#### INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: 18SLB03-0405

Matrix: SOIL

SDG Name:

WP2300

Percent Solids: 89.2

Lab Sample ID: WP2300-003

Concentration Units (ug/L or mg/Kg dry weight): mg/Kg

7429-90-5 ALUMINUM 2700 P 1
7440-36-0 ANTIMONY 0.15 U P 1
7440-38-2 ARSENIC 2.8 P 1
7440-39-3 BARIUM 8.1 P 1
7440-41-7 BERYLLIUM 0.05 B P 1
7440-43-9 CADMIUM 0.16 U P 1
7440-70-2 CALCIUM 126 P 1
7440-47-3 CHROMIUM 4.0 P 1
7440-48-4 COBALT 0.36 U P 1
7440-50-8 COPPER 1.8 B P 1
7439-89-6 IRON 2470 P 1
7439-92-1 LEAD 3.8 P 1
7439-95-4 MAGNESIUM 122 P 1
7439-96-5 MANGANESE 4.6 P 1
7439-97-6 MERCURY 0.01 U CV 1
7440-02-0 NICKEL 0.63 B P 1
7440-09-7 POTASSIUM 145 P 1
7782-49-2 SELENIUM 0.21 U P 1
7440-22-4 SILVER 0.21 U P 1
7440-23-5 SODIUM 14.7 P 1
7440-28-0 THALLIUM 0.37 U P 1
7440-62-2 VANADIUM 5.2 P 1
7440-66-6 ZINC 3.1 P 1

Color Before: BROWN

Texture: MEDIUM

Color After: YELLOW

Clarity After: CLEAR

Comments:

Client:

Katahdin Analytical

340 County Road

Westbrook, Maine 04092

Contact:

Ms. Andrea Colby

Project Description:

Former Naval Complex

cc: KATA00199

Report Date: May 27, 1999

Page 1 of 1

Sample ID	: 18SLB03-0405
Lab ID	: 9905110-02
Matrix	; Soil
Date Collected	: 05/04/99
Date Received	: 05/04/99
Priority	: Routine
Collector	: Client

Parameter	Qualifier	Result	DL_	RL	Units	DF	Analy	st Date	Time	Batch M	[
General Chemistry Total Rec. Petro. H: Evaporative Loss @		370 11.0	112 1.00	224 1.00	mg/kg wt%		AAT GJ	05/26/99 05/05/99			

M = Method	Method-Description	
M 1	SW846 9071 A	
M 2	EPA 3550	

#### Notes:

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

J indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

Data reported in mass/mass units is reported as 'dry weight'.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct any questions to your Project Manager, Valerie Davis at (843) 769-7391.

Reviewed By

^{*} indicates that a quality control analyte recovery is outside of specified acceptance criteria.



Client:

Arnold Lamb

Tetra Tech NUS 794 South Military Trail

Deerfield Beach, FL 33442

Proj. ID: CNC CHARLESTON

Lab Number:

WP2300-4

SDG:

WP2300 6/9/99

Report Date: PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

91

Method:

SW8260

Date Analyzed: 5/15/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
18SLB04-0405	SL	5/4/99	5/5/99	5/15/99	JSS	5035	JSS
Compound	Res	ult Units	DF	Sample PQL	Method PQL		
BENZENE	<6	i ug/Kg	1.2	6	5		
TOLUENE	<6	i ug/Kg	1.2	6	5		
1,2-DIBROMOETHANE	<6	i ug/Kg	1,2	6	5		
ETHYLBENZENE	<6	i ug/Kg	1.2	6	5		
NAPHTHALENE	<6	i ug/Kg	1.2	6	5		
MTBE	<6	ug/Kg	1.2	6	5		
TOTAL XYLENES	<6	i ug/Kg	1.2	6	5		
DIBROMOFLUOROMETHANE	\$22	3 <b>%</b>	1.2				
1,2-DICHLOROETHANE-D4	\$22	2 %	1.2				
OLUENE-D8	\$19	18 %	1.2				
-BROMOFLUOROBENZENE	\$16	1 %	1.2				

port Notes:

\$

1



Client:

Arnold Lamb

Tetra Tech NUS

794 South Military Trail

Deerfield Beach, FL 33442

Proj. ID: CNC CHARLESTON

Lab Number:

WP2300-4RA

SDG:

WP2300 6/9/99

Report Date: PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

Method:

SW8260

Date Analyzed: 5/15/99

Sample Description	Matrix	Sam	pled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
18SLB04-0405	SL	5	5/4/99	5/5/99	5/15/99	JSS	5035	JSS
Compound	Re	sult	Units	DF	Sample PQL	Method PQL		
BENZENE		<6	ug/Kg	1.2	6	5		
TOLUENE		<6	ug/Kg	1.2	6	5		
1,2-DIBROMOETHANE	•	<6	ug/Kg	1.2	6	5		
ETHYLBENZENE	•	<6	ug/Kg	1.2	6	5		
NAPHTHALENE	•	<6	ug/Kg	1.2	6	5		
MTBE	•	<6	ug/Kg	1.2	6	5		
TOTAL XYLENES	•	<6	ug/Kg	1.2	6	5		
DIBROMOFLUOROMETHANE	1	31	%	1.2				
1,2-DICHLOROETHANE-D4	1	24	%	1.2				
TOLUENE-D8	1	14	%	1.2				
P-BROMOFLUOROBENZENE	8	37	%	1.2				

Report Notes;

0-13



Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2300-4

SDG:

WP2300

Report Date:

6/30/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

91

Method:

EPA 8270

Date Analyzed: 6/24/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
18\$LB04-0405	SL	5/4/99	5/5/99	5/18/99	GST	SW3550	sw
Compound	Řes	sult Units	DF	Sample PQL	Method PQL		
MAPHTHALENE	<3	60 ug/Kg	1.1	360	330		
2-METHYLNAPHTHALENE	<3	60 ug/Kg	1.1	360	330		
ACENAPHTHYLENE	<3	60 ug/Kg	1.1	360	330		
ACENAPHTHENE	<3	60 ug/Kg	1.1	360	330		
FLUORENE	<3	60 ug/Kg	1.1	360	330		
PHENANTHRENE	<3	60 ug/Kg	1.1	360	330		
ANTHRACENE	<3	60 ug/Kg	1.1	360	330		
FLUORANTHENE	<3	60 ug/Kg	1.1	360	330		
PYRENE	<3	60 ug/Kg	1.1	360	330		
ZO[A]ANTHRACENE	<3	60 ug/Kg	1.1	360	330		
CHRYSENE	<3	60 ug/Kg	1.1	360	330		
BENZO[B]FLUORANTHENE	<30	60 ug/Kg	1.1	360	330		
BENZO[K]FLUORANTHENE	<30	60 ug/Kg	1.1	360	330		
BENZO[A]PYRENE	<36	60 ug/Kg	1.1	360	330		
INDENO[1,2,3-CD]PYRENE	<30	60 ug/Kg	1.1	360	330		
DIBENZ[A,H]ANTHRACENE	<36	60 ug/Kg	1.1	360	330		
BENZO[G,H,I]PERYLENE	<30	60 ug/Kg	1.1	360	330		
NITROBENZENE-D5	8:		1.1				
2-FLUOROBIPHENYL	84	4 %	1.1				
TERPHENYL-D14	11	6 %	1.1				

rt Notes:

Client:

Katahdin Analytical

340 County Road

Westbrook, Maine 04092

Contact:

Ms. Andrea Colby

Project Description:

Former Naval Complex

cc: KATA00199

Report Date: May 27, 1999

Page 1 of 1

Sample ID Lab ID : 18SLB04-0405 : 9905110-01

Matrix

: Soil

Date Collected

: 05/04/99

Date Received

: 05/04/99 : Routine

Priority

· KVAIII

•	
Collector	

: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analy	st Date	Time	Batch 1	м 
General Chemistr	y										
Total Rec. Petro. I	lydrocarbons	235	112	224	mg/kg	1.0	AAT	05/26/99	1000	150070	Ī
Evaporative Loss	@ 105 C	11.0	1.00	1.00	wt%	1.0	GJ	05/05/99	1625	148401	2

M = Method	Method-Description	·	 
M 1	SW846 9071A		 
M 2	EPA 3550		

#### Notes:

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

I indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

Data reported in mass/mass units is reported as 'dry weight'.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct any questions to your Project Manager, Valerie Davis at (843) 769-7391.

Reviewed By

indicates that a quality control analyte recovery is outside of specified acceptance criteria.

#### **INORGANIC ANALYSIS DATA SHEET**

Lab Name: Katahdin Analytical Services

Client Field ID: 18SLB04-0405

Matrix: SOIL

SDG Name:

WP2300

Percent Solids: 91.0

Lab Sample ID: WP2300-004

Concentration Units (ug/L or mg/Kg dry weight): mg/Kg

7429-90-5 ALUMINUM 2860 P 1 7440-36-0 ANTIMONY 0.21 B P 1 7440-38-2 ARSENIC 11.9 P 1 7440-39-3 BARIUM 22.8 P 1 7440-41-7 BERYLLIUM 0.32 B P 1 7440-43-9 CADMIUM 0.40 B P 1
7440-38-2 ARSENIC 11.9 P 1 7440-39-3 BARIUM 22.8 P 1 7440-41-7 BERYLLIUM 0.32 B P 1
7440-39-3 BARIUM 22.8 P 1 7440-41-7 BERYLLIUM 0.32 B P 1
7440-41-7 BERYLLIUM 0.32 B P 1
7440 42.0 CADMITM 0.40 P P 1
7440-43-9 CADMIUM 0.40 B P 1
7440-70-2 CALCIUM 5390 P 1
7440-47-3 CHROMIUM 9.6 P 1
7440-48-4 COBALT 1.5 B P I
7440-50-8 COPPER 34.1 P 1
7439-89-6 IRON 4800 P 1
7439-92-1 LEAD 24.5 P 1
7439-95-4 MAGNESIUM 376 P 1
7439-96-5 MANGANESE 23.2 P 1
7439-97-6 MERCURY 0.11 CV 1
7440-02-0 NICKEL 7.7 P 1
7440-09-7 POTASSIUM 243 P 1
7782-49-2 SELENIUM 0.25 U P 1
7440-22-4 SILVER 0.25 U P 1
7440-23-5 SODIUM 56.5 P 1
7440-28-0 THALLIUM 0.44 U P 1
7440-62-2 VANADIUM 17.4 P 1
7440-66-6 ZINC 34.3 P 1

Color Before: BROWN

Texture: MEDIUM

Color After: YELLOW

Clarity After: CLEAR

Comments:



# SDG NARRATIVE KATAHDIN ANALYTICAL SERVICES TETRA TECH NUS CASE CNC CHARLESTON

#### Sample Receipt

The following samples were received on May 18, 1999 and were logged in under Katahdin Analytical Services work order number WP2490 for a hardcopy due date of June 17, 1999.

	KATAHDIN	TTNUS	GEL
	Sample No.	Sample Identification	Sample No.
	WP2490-1	16SLB01-0203	
	WP2490-2	16SLB02-0203	
	WP2490-3	16SLB02-0203D	
	WP2490-4	16SLB05-0203	
	WP2490-5	17SLB01-0708	
	WP2490-6	17SLB07-0809	
	WP2490-7	17SLB02-0809	
	WP2490-8	17SLB09-0708	
	WP2490-9	17SLB04-0304	
	WP2490-11	17SLB05-0708D	
	WP2490-12	17SLB05-0708	
/	WP2490-13	17SLB03-0506	9905606-01
$\sqrt{\langle}$	WP2490-14	18SLB03-00506D	9905606-02
	WP2490-15	17SLB03-0506A	
/	WP2490-16	17SLB03-0506B	
(	WP2490-17	18SLB03-0304	
	WP2490-18	19SLB16-0203	9905606-03
	WP2490-19	01TL00103	

The samples were logged in for the analyses specified on the chain of custody form. All problems encountered and resolved during sample receipt have been documented on the applicable chain of custody forms.

Sample analyses have been performed by the methods as noted herein.

#### Volatile Organic Analysis

One aqueous (trip blank) and thirteen soil/sediment samples were received by the Katahdin Analytical Services, Inc. GC/MS laboratory on May 18, 1999 and were specified to be analyzed by USEPA method 8260B for the analytes benzene, toluene, ethylbenzene, xylenes, MTBE, naphthalene, and EDB.





Analyses for this SDG were performed on instruments 5972-M (low level soil), 5972-Z(low level soil), and 5972-F (aqueous). A VSTD050 (50 ppb standard) was used for the continuing calibration standard. Internal standard and surrogate compounds were also spiked at 50 ug/l.

Batch QC (VBLK, and LCS) was performed in each twelve hour window. Results are included in this data package. The LCS QC samples were spiked with the entire list of compounds quantitated for at 50 ppb. No matrix spike/matrix spike duplicate pair was analyzed on any of the samples in this workorder.

Method 8000B, section 7.5.1.2.1 (Revision 2, 12/96) states, "in those instances where the RSD for one or more analytes exceeds 20%, the initial calibration curve may still be acceptable if the mean of the RSD values for all analytes in the calibration is less than or equal to 20%." Method 8260B narrows this 20% maximum to 15%.

In the calibration curves analyzed in this SDG, several analytes had %RSD values exceeding the allowed 15%. Since the average %RSD for all analytes was 8.4%, 13.4%, and 14.1%, the curves were acceptable.

Initial analyses of samples WP2490-1, WP2490-3, WP2490-5, and WP2490-13 yielded internal standard area and/or surrogate recovery deviations. Reanalyses yielded similar results, confirming matrix interference. Both sets of data for each sample are included in this data package.

Several manual integrations were performed due to split peaks; all have been flagged with a "M" (software-generated) on the pertinent quantitation reports. All "M" flags have been dated and initialed by the analyst performing the integration. In addition, all "M" flags have been reviewed and approved by the GC/MS supervisor. Copies of each manual integration are included in the pertinent quantitation reports.

No other protocol deviations were noted by the volatile organics staff.

#### Semivolatile Organic Analysis

Thirteen soil/sediment samples were received by the Katahdin GC/MS laboratory on May 18, 1999 for analysis in accordance with 8270C for the TCL/PAH list of analytes.

Extraction of all of the soil samples occurred following USEPA method 3550 on May 25, 1999. A laboratory control spike consisting of all TCL analytes spiked into organic free sand, was extracted in the batch along with a site specific MS/MSD pair on sample WP2490-9.

WP2490-9MS and 9MSD showed an elevated recovery for the surrogate terphenyl-d14, and low recovery of the internal standard Perylene-d12. No action was taken in accordance with the method.





Samples WP2490-8,12, and 13 yielded internal standard area recovery deviations. Reanalysis confirmed the internal standard deviations confirming matrix interference. Both sets of data for this sample are included in the data package.

The initial calibration curves analyzed in this SDG had some of the target analyte %RSD values exceeding 15 %.

Method 8000B, section 7.5.1.2.1 (Revision 2, 12/96) states, "in those instances where the RSD for one or more analytes exceeds 20%, the initial calibration curve may still be acceptable if the mean of the RSD values for all analytes in the calibration is less than or equal to 20%." Section 7.3.7.1 of method 8270C (revision 3, 12/96) narrows this 20% maximum to 15%.

In the calibration curves analyzed for this workorder, the average %RSD for all analytes were as follows:

5970-1 6/22/99 8.2% 5970-I 6/28/99 8.7%

Several manual integrations were performed due to split peaks; all have been flagged with a "M" by the data system. All manual integrations have been dated and initialed by the responsible analyst. Copies of each manual integration are included in the data package. All manual integrations have been reviewed and approved by the GC/MS supervisor.

No other protocol deviations were noted by the semivolatiles organics staff.

#### Wet Chemistry Analysis

For work order WP2490 the analyses for Total Combustible Organics (TCO) have been performed in accordance with the "Annual Book of ASTM Standards", 1987. Analyses for Solids-Total Residue (TS) for work order WP2490 samples have been performed in accordance with "Contract Laboratory Program Statement of Work for Inorganic Analysis".

All analyses were performed within analytical hold time. No protocol deviations were noted by the Wet Chemistry laboratory staff.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager and/or his designee, as verified by the following signature.

Authorized Signature

0000004

KATAHUIN ANALYTICAL SERVICES SAMPLE RECEIPT CONDITION REPO Tel. (207) 874-2400 Fax (207) 775-4029	•	(	LAB (WORK ORDER) # PAGE:/ COOLER: /	WP 2490 _of_ 2 of_ 2
CLIENT: Tetrated -SC PROJECT: CNC Chanles	ton		COC# SDG# DATE / TIME RECEIVED: DELIVERED BY: RECEIVED BY: LIMS ENTRY BY: LIMS REVIEW BY / PM:	
1. CUSTODY SEALS PRESENT / INTACT? 2. CHAIN OF CUSTODY PRESENT IN THIS COOLER? 3. CHAIN OF CUSTODY SIGNED BY CLIENT? 4. CHAIN OF CUSTODY MATCHES SAMPLES? 5. TEMPERATURE BLANKS PRESENT? 6. SAMPLES RECEIVED AT 4°C +/-2? 1. ICE / ICE PACKS PRESENT Y OF N? 7. VOLATILES FREE OF HEADSPACE? 8. TRIP BLANK PRESENT IN THIS COOLER 9. PROPER SAMPLE CONTAINERS AND VOLUME? 10. SAMPLES WITHIN HOLD TIME UPON RECEIPT? 11. SAMPLES PROPERLY PRESERVED(1)? 12. CORRECTIVE ACTION REPORT FILED? 13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMMELOG - IN NOTES(1):			TEMP BLANK TEMP (*C)= // /  COOLER TEMP (*C)= NA (RECORD COOLER TEMP ONLY IF TEMP)  AFCEE OTHER (STATE OF ORIGIN):	

Use this space (and additional sheets if necessary) to document samples that are received broken or compromised, C-O-C discrepancies, radiation checks, residual chlorine check, results of pH check if required. If samples required pH adjustment, record volume and type of preservative added.

KATAHDIN ANALYTICAL SERVI	•			LAB (WORK ORDER) #
<b>SAMPLE RECEIPT CONDITION  </b> Tel. (207) 874-2400 Fax (207) 775-4029	REPORT			PAGE:
Fax (201) 115-4029				COOLER: 2 OF 2
CLIENT: Tetratech-S	<u>د</u>	_		COC#SDG#
PROJECT: CNC chanl	eston			DATE / TIME RECEIVED: OS/18/99~1010  DELIVERED BY: FEDEY  RECEIVED BY: BLAK  LIMS ENTRY BY: Scal  LIMS REVIEW BY / PM: A'C
	YES	МО	EXCEPTIONS	COMMENTS RESOLUTION
I. CUSTODY SEALS PRESENT / INTACT?	(3)			
CHAIN OF CUSTODY PRESENT IN THIS COOL	.ER? [ <b>3</b> ]			
3. CHAIN OF CUSTODY SIGNED BY CLIENT?	U			
I. CHAIN OF CUSTODY MATCHES SAMPLES?				
5. TEMPERATURE BLANKS PRESENT?				TEMP BLANK TEMP (*C)= 4/, /
S. SAMPLES RECEIVED AT 4°C +/- 27	C)			COOLER TEMP (°C )* NA (RECORD COOLER TEMP ONLY IF TEMP BLANK IS NOT PRESENT)
7. VOLATILES FREE OF HEADSPACE?			3	
3. TRIP BLANK PRESENT IN THIS COOLER		3		
PROPER SAMPLE CONTAINERS AND VOLUM	IE? <b>E</b>			
IO. SAMPLES WITHIN HOLD TIME UPON RECEI	PT? Eľ			
11. SAMPLES PROPERLY PRESERVED ⁽¹⁾ ?				
12. CORRECTIVE ACTION REPORT FILED?			N/A	
3. ANALYTICAL PROGRAMS (CIRCLE ONE)	COMMERCIAL	CLP HA	ZWRAP NFESC	ACOE AFCEE OTHER (STATE OF ORIGIN):
LOG - IN NOTES(1):				
		v ²	•	

Use this space (and additional sheets if necessary) to document samples that are received broken or compromised, C-O-C discrepancies, radiation checks, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine check, residual chlorine c

# Katahdin P.O. Box 720 Westbrook, ME 04098

### CHAIN OF COSTODY

ANAINTICAL STRVICES Tel: (207) 874-2400 Fax: (207) 775-4029				ı	PLEASE	PRINT	IN PEN	i	Pag	је	of <u>2</u>	
Tetra Tech NUS	,	Contac	i ttow	70		hone # 나23) i	2 ها د	09~	Fau	·#		
AD S NH-21 Ave. H	City \	-vyr	/1 i	<u>ze.</u> arles		ate So				294	 /^<	
	j. Name / N	D.	<u> </u>	er je o	1011			Katahdir			<u> </u>	
Bill (if different than above)		Ad	dress									
Sampler (Print / Sign)	_						Copie	s To:				
LAB USE ONLY WORK ORDER #: WP 2490	<u>)</u>					NALYSIS I	RESER	VATIVĖS				
KATAHDIN PROJECT MANAGER			Filt. DYDN	Filt. OYON	Filt. OYON	Filt. OYON(	Filt. DYON	Filt, OYON	Filt. OYON	Filt. OYON	Filt. OYON	<u> </u>
TIEMATIO.								:		:	-	332
SHIPPING INFO:	CLIEN	Π	+Napt	45	4	ize e <del>ze</del> v			:	:		headspac
TEMP°C	□ NOT II	NTACT	<b>200</b>	20	EX, E	ain Size Hismeste		:		:		
Sample Description     Date / Time coll'd	Matrix	No. of Cntrs.	PAH	7	BTE 8 a	AH B H					:	Œ
168LB01-0203 5/17/0810	S	5	X		X							<i>6</i> 8
16SLB02-02035/17/0825	S	5	X		X		¥.					20
168LB02-0203D 5/17/0825	<u>S</u>	5	×		X							20
16SLB05-0203 5/17/0845	S	5	X	l 	X					ļ		9C
75 LB01-0708 5/17/1050	S	5	_X		X							
178 LB07-0809 5/17/1140	S	5	X		Х							0
175LB02-0809 5/17/1105	S	5	×		X					_		5
1751-809-0708 5/17/1425	S	5	X		X							3
175LB04-0304 5/17/1115	S	5	X	ļ <u>.</u>	X							0
1731304-03041135/17/1115	S	5	X		X						<u> </u>	8
17SL BO5-6708D 5/17/1200	S	5	X	ļ	X	_				ļ		3
17SLB05-0708 5/17/120	S	5	X		X						<u> </u>	3
17SLB03-0506 5/17/1210	S	7	X		X	X					<u> </u>	11
18SLB03-0506D 5/17/1550	S	5	X	ļ	X			ļ <u>.</u>			<u> </u>	<u>                                     </u>
18SL363-0364 5/17/1550	8	.1				X						
OML00103 5/3/1515		2			X						<u> </u>	
Grain Size for 178LB03-050	ob an	e la	beled	tin i	h A ₹	Bat	the	end i	of #	ke San	PleI	; <b>D</b>
Relinquished By: (Signature) Date / Time Received By: (Signature) Relinquished By: (Signature) Date / Date / Time Received By: (Signature) Relinquished By: (Signature) Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Date / Da											By: (Si	nature)
	ф964 eived By: (S			<u>, 47.</u>		Signature	<u>_</u>	ate / T	—۲	Received	By: (Si	gnature`
						, g to ( )	_		_			
FORMSOURCE INC. 29 (207) 782-3311 FORM # CHN-OF-CSTDY							1					



Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2490-19

SDG:

WP2490

Report Date:

6/16/99

PO No.:

N7912-P99264

Project: % Solids: CTO #68

Method:

N/A

SW8260

Date Analyzed: 5/26/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
01TL00103 (trip)	AQ 5/3/99		5/18/99	5/26/99	JSS	5030	JSS
Compound	Res	ult Units	DF	Sample PQL	Method PQL		
BENZENE	<	s ug/L	1.0	5	5		
TOLUENE	<	5 ug/L	1.0	5	5		
1,2-DIBROMOETHANE	<5	5 ug/L	1.0	5	5		
ETHYLBENZENE	<	5 ug/L	1.0	5	5		
NAPHTHALENE	<5	5 ug/L	1.0	5	5		
MTBE	<	5 ug/L	1.0	5	5		
TOTAL XYLENES	<5	5 ug/L	1.0	5	5		
DIBROMOFLUOROMETHANE	83	3 %	1.0				
1,2-DICHLOROETHANE-D4	80	96	1.0				
TOLUENE-D8	86	5 %	1.0				
P-BROMOFLUOROBENZENE	81	96	1.0				

Report Notes:



Client: Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2490-14

SDG:

WP2490

Report Date: PO No. :

7/8/99 N7912-P99264

Project:

CTO #68

% Solids:

90

Method: EPA 8270

Date Analyzed: 6/29/99

Sample Description	Matrix	Sampled Date		Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst		
18SLB03-0506D	SL 5/		/99	5/18/99	5/25/99	DPD	EPA 3550	KRT		
Compound	Re	sult	Units	DF	Sample PQL	Method PQL				
NAPHTHALENE	<4	Ю0	ug/Kg	1.2	400	330				
2-METHYLNAPHTHALENE	<4	1 <b>00</b>	ug/Kg	1.2	400	330				
ACENAPHTHYLENE	<4	Ю0 і	ug/Kg	1.2	<b>40</b> 0	330				
ACENAPHTHENE	<4	Ю0 і	ug/Kg	1.2	<b>40</b> 0	330				
FLUORENE	<4	100	ug/Kg	1.2	<b>40</b> 0	330				
PHENANTHRENE	<4	Ю0 і	ug/Kg	1.2	400	330				
ANTHRACENE	<4	1 <b>00</b>	ug/Kg	1.2	400	330				
FLUORÀNTHENE	<4	Ю0 і	ug/Kg	1.2	400	330				
PYRENE	<4	100	ug/Kg	1,2	<b>40</b> 0	330				
BENZO[AJANTHRACENE	<4	Ю0 і	ug/Kg	1.2	<b>40</b> 0	330				
YSENE	<4	1 <b>00</b>	ug/Kg	1.2	<b>40</b> 0	330				
o≝NZO[B]FLUORANTHENE	<4	Ю0 -	ug/Kg	1.2	<b>40</b> 0	330				
BENZO[K]FLUORANTHENE	<4	100	ug/Kg	1.2	400	330				
BENZO[A]PYRENE	<4	100	ug/Kg	1.2	<b>40</b> 0	330				
INDENO[1,2,3-CD]PYRENE	<4	Ю0	ug/Kg	1.2	400	330				
DIBENZ[A,H]ANTHRACENE	<4	Ю0	ug/Kg	1.2	400	330				
BENZO[G,H,I]PERYLENE	<4	100	ug/Kg	1.2	400	330				
NITROBENZENE-D5	3	Ю	%	1.2						
2-FLUOROBIPHENYL	3	3	%	1.2						
TERPHENYL-D14	3	13	%	1.2						

ort Notes:



CLIENT: Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number : WP-2490-14

Report Date: 07/09/99

PO No. : N7912-P99264 Project : CTO #68

WIC#: ONC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 13 of 14

SAMPLE DESCRIPTION		MATRIX	ζ	SAMP	LED BY	SAMPLED DATE RECEIVED			
18SLB03-0506D	Solid		CTIE	NT	05/17/99		05/18/99		
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES	
Solids-Total Residue (TS) Total Combustible Organics	90.	wt % wt %	1.0		CLP/CIP SOW ASTM D2974-8			1 2	

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect samplespecific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

07/09/99

LJO/baeajc(dw)/msm PE18TSS8 CC: MS. LEE LECK TEIRA TECH NUS FOSTER PALZA 7 661 ANDERSEN DR.

⁽¹⁾ Sample Preparation on 05/18/99 by JF

⁽²⁾ Sample Preparation on 06/04/99 by JF

Client:

Katahdin Analytical

340 County Road

Westbrook, Maine 04092

Contact:

Ms. Andrea Colby

Project Description:

Former Naval Complex

cc: KATA00199

Report Date: June 11, 1999

Page 1 of 1

Sample ID Lab ID : 18SLB03-0506 : 9905606-02 : Soil

Matrix
Date Collected

: 05/17/99

Date Received Priority : 05/18/99 : Routine

Collector

: Client

Parameter	Qualifler	Result	DL	RL	Units	DF	Anal	yst Date	Time	Batch M
General Chemistry Evaporative Loss @ 16 Total Organic Carbon		11.0 2490	1.00 43.1	1.00 100	wt% mg/kg	1.0 1.0	GJ LS	05/19/99 05/28/99		

M = Method	Method-Description	 	
M 1	EPA 3550		
M 2	SW846 9060 Modified		

#### Notes:

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

J indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

Data reported in mass/mass units is reported as 'dry weight'.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct

any questions to your Project Manager, Valerie Davis at (843) 769-7391.

Just M. G)

Reviewed By

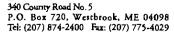
[&]quot; indicates that a quality control analyte recovery is outside of specified acceptance criteria.



# SDG NARRATIVE KATAHDIN ANALYTICAL SERVICES TETRA TECH NUS CASE CNC CHARLESTON

#### Sample Receipt

The following samples were received on May 15, 1999 and were logged in under Katahdin Analytical Services work order number WP2474 for a hardcopy due date of June 14, 1999.


	KATAHDIN	TTNUS	GEL
1	Sample No.	Sample Identification	Sample No.
Ļ	WP2474-1	18SLB05-0406	9905519-03
J	WP2474-2	18SLB01-0203	9905519-02
\	WP2474-3	18SLB02-0405	9905519-01
á	WP2474-4	19SLB09-0405D	
	WP2474-5	19SLB03-0506	
	WP2474-6	19SLB09-0405	
	WP2474-7	19SLB06-0506	
	WP2474-8	19SLB08-0405	
	WP2474-9	16SLB06-0304	9905519-05
	WP2474-10	16SLB10-0304	
	WP2474-11	16SLB03-0304	
	WP2474-12	19SLB16-0203	
	WP2474-13	16SLB04-0304	9905519-04
	WP2474-14	02TL00201 TRIP BLANK	
	WP2474-15	16SLB04-0304/2ND INT	
	WP2474-16	16SLB04-0304/TPO INT	•

The samples were logged in for the analyses specified on the chain of custody form. All problems encountered and resolved during sample receipt have been documented on the applicable chain of custody forms.

Sample analyses have been performed by the methods as noted herein.

#### **Volatile Organic Analysis**

One aqueous (trip blank) and thirteen soil/sediment samples were received by the Katahdin Analytical Services, Inc. GC/MS laboratory on May 15, 1999 and were specified to be analyzed by USEPA method 8260B for the analytes benzene, toluene, ethylbenzene, xylenes, MTBE, naphthalene, and EDB.





Analyses for this SDG were performed on instruments 5972-M (low level soil), 5972-F(aqueous/medium level soil), and 5970-O (medium level soil). A VSTD050 (50 ppb standard) was used for the continuing calibration standard. Internal standard and surrogate compounds were also spiked at 50 ug/l.

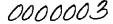
Batch QC (VBLK, and LCS) was performed in each twelve hour window. Results are included in this data package. The LCS OC samples were spiked with the entire list of compounds quantitated for at 50 ppb. No matrix spike/matrix spike duplicate pair was analyzed on any of the samples in this workorder.

Method 8000B, section 7.5.1.2.1 (Revision 2, 12/96) states, "in those instances where the RSD for one or more analytes exceeds 20%, the initial calibration curve may still be acceptable if the mean of the RSD values for all analytes in the calibration is less than or equal to 20%." Method 8260B narrows this 20% maximum to 15%.

In the calibration curves analyzed in this SDG, several analytes had %RSD values exceeding the allowed 15%. Since the average %RSD for all analytes was 11.5%, 8.4%, 8.3%, 10.4%, and 13.4%, the curves were acceptable.

Sample WP2474-4 was analyzed following medium level protocols only due to the matrix, resulting in elevated reporting limits.

Initial analysis of sample WP2474-6 yielded internal standard area and surrogate recovery deviations. Reanalysis yielded similar results, confirming matrix interference. Both sets of data for this sample are included in this data package.


Initial analyses of samples WP2474-8 and -13 yielded surrogate recovery deviations and target analyte concentrations over the upper limit of the calibration curve. Reanalysis occurred following medium level protocols successfully. Both sets of data for each sample are included in this data package.

Initial analysis of sample WP2474-11 yielded potential carryover. Analysis of sample WP2474-

yielded internal standard area recoveries. Reanalysis of each occurred following medium level protocols since none of the low level ENCORE aliquots remained.

Several manual integrations were performed due to split peaks; all have been flagged with a "M" (software-generated) on the pertinent quantitation reports. All "M" flags have been dated and initialed by the analyst performing the integration. In addition, all "M" flags have been reviewed and approved by the GC/MS supervisor. Copies of each manual integration are included in the pertinent quantitation reports.

No other protocol deviations were noted by the volatile organics staff.





#### Semivolatile Organic Analysis

Thirteen soil/sediment samples were received by the Katahdin GC/MS laboratory on May 15, 1999 for analysis in accordance with 8270C for the TCL/PAH list of analytes.

Extraction of all of the soil samples occurred following USEPA method 3550 on May 26, 1999. A laboratory control spike consisting of all TCL analytes spiked into organic free sand, was extracted in the batch along with a site specific MS/MSD pair on sample WP2474-9.

WP2474-9, 9MS and 9MSD showed an elevated recovery for the surrogate terphenyl-d14, and low recovery of the internal standard Perylene-d12 confirming matrix interference. No action was taken in accordance with the method.

Sample WP2474-2 was initially analyzed on 6/28/99 and displayed less than 50% recovery for the internal standard perylene-d12, and an elevated recovery for the surrogate terphenyl-d14. Reanalysis confirmed matrix interference as perylene-d12 recovered below 50% again, both sets of data are enclosed in the data package.

Sample WP2474-7 recovered the surrogate terphenyl-d14 above the limit, an elevated recovery would indicate a high bias and the sample showed no positive detects.

Sample WP2474-12 recovered the internal standards chrysene-d12, and perylene-d12 at less than 50%, reanalysis was not performed. The target analyte result for Benzo (ghi) Perylene may be biased high.

The initial calibration curves analyzed in this SDG had some of the target analyte %RSD values exceeding 15 %.

Method 8000B, section 7.5.1.2.1 (Revision 2, 12/96) states, "in those instances where the RSD for one or more analytes exceeds 20%, the initial calibration curve may still be acceptable if the mean of the RSD values for all analytes in the calibration is less than or equal to 20%." Section 7.3.7.1 of method 8270C (revision 3, 12/96) narrows this 20% maximum to 15%.

In the calibration curves analyzed for this workorder, the average %RSD for all analytes were as follows:

5970-X 6/27/99 9.4%

Several manual integrations were performed due to split peaks; all have been flagged with a "M" by the data system. All manual integrations have been dated and initialed by the responsible analyst. Copies of each manual integration are included in the data package. All manual integrations have been reviewed and approved by the GC/MS supervisor.

No other protocol deviations were noted by the semivolatiles organics staff.





#### **Metals Analysis**

The samples of Katahdin Work Order WP2474 were prepared and analyzed for metals in accordance with the "Test Methods for Evaluating Solid Waste", SW-846, November 1986, Third Edition.

Inductively-Coupled Plasma (ICP) Atomic Emission Spectroscopic Analysis

Solid-matrix Katahdin Sample Nos. WP2474-(1-3) were digested for ICP analysis on 06/14/99 (QC Batch PF14ICS0) in accordance with USEPA Method 3050B. The measured calcium concentration (0.111 mg/L, corresponding to a dry-weight concentration of 11.1 mg/kg) of the preparation blank (PBSPF14ICS0) that is associated with this digestion batch exceeds the laboratory's acceptance limit. However, because the measured calcium concentrations of all associated client samples are more than ten times that of the preparation blank, no corrective action is required.

ICP analyses of Katahdin Work Order WP2474 sample digestates were performed in accordance with USEPA Method 6010B, using a Thermo Jarrell Ash (TJA) Trace ICP spectrometer and a TJA 61 ICP spectrometer. All samples were analyzed within holding times and all QC criteria were met with the following comments or exceptions:

Some of the results for run QC samples (ICV, ICB, CCV, CCB, ICSA, and ICSAB) included in the accompanying data package may have exceeded acceptance limits for some elements. Please note that all client samples and batch QC samples associated with out-of-control results for run QC samples were subsequently reanalyzed for the analytes in question.

#### Analysis of Mercury by Cold Vapor Atomic Absorption (CVAA)

Solid-matrix Katahdin Sample Nos. WP2474-(1-3) were digested for mercury analysis on 06/09/99 (QC Batch PF09HGS2) in accordance with USEPA Method 7471A. Katahdin Sample No. WP2474-1 was prepared with duplicate matrix-spiked aliquots.

Mercury analyses of Katahdin Work Order WP2474 sample digestates were performed using a Leeman Labs PS200 automated mercury analyzer. All samples were analyzed within holding times and all run QC criteria were met.

#### **Wet Chemistry Analysis**

For work order WP2474 the analyses for Total Combustible Organics (TCO) have been performed in accordance with the "Annual Book of ASTM Standards", 1987. Analyses for Solids-Total Residue (TS) for work order WP2474 samples have been performed in accordance with "Contract Laboratory Program Statement of Work for Inorganic Analysis".

All analyses were performed within analytical hold time. No protocol deviations were noted by the Wet Chemistry laboratory staff.





I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager and/or his designee, as verified by the following signature.

Authorized Signature

KATAH ANALYTICAL SERVICES SAMPLE RECEIPT CONDITION REPO Tel. (207) 874-2400 Fax (207) 775-4029	-		ž	LAB (WORK ORDER) # W 2 2 7 4          PAGE: 0F 2          COOLER: 0F 2
CLIENT: Tetra Tech		_		COC# — SDG# — DATE / TIME RECEIVED: 05 (599 (100 DELIVERED BY: FEOEX
PROJECT: CNC Charles	ten_	_		RECEIVED BY: SK LIMS ENTRY BY: BK K LIMS REVIEW BY / PM: ADC
	YES	NO	EXCEPTIONS	COMMENTS RESOLUTION
1. CUSTODY SEALS PRESENT / INTACT?				
2.CHAIN OF CUSTODY PRESENT IN THIS COOLER?				
3. CHAIN OF CUSTODY SIGNED BY CLIENT?				
4. CHAIN OF CUSTODY MATCHES SAMPLES?			. 🗖	
5. TEMPERATURE BLANKS PRESENT?				TEMP BLANK TEMP (°C)= 2.9
6. SAMPLES RECEIVED AT 4°C.+/- 2? ICE / ICE PACKS PRESENT ( ) or N?				COOLER TEMP (°C )= NA (RECORD COOLER TEMP ONLY IF TEMP BLANK IS NOT PRESENT)
7. VOLATILES FREE OF HEADSPACE?				
8. TRIP BLANK PRESENT IN THIS COOLER	<b>12</b>			
9. PROPER SAMPLE CONTAINERS AND VOLUME?				
10. SAMPLES WITHIN HOLD TIME UPON RECEIPT?	W			not extended within 48 hours yer kely Johnson-Campon &
11. SAMPLES PROPERLY PRESERVED ⁽¹⁾ ?				Collision
12. CORRECTIVE ACTION REPORT FILED?			N/A	
13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMM	IERCIAL	CLP HA	ZWRAP (NFESC )A	COE AFCEE OTHER (STATE OF ORIGIN):
LOG - IN NOTES ⁽¹⁾ :				

Use this space (and additional sheets if necessary) to document samples that are received broken or compromised, C-O-C discrepancies, radiation checks, residual chlorine check, results of pH check if required. If samples required pH adjustment, record volume and type of preservative added.

KATAHDIN ANALYTICAL SERVICES, SAMPLE RECEIPT CONDITION REPO				LA	AB (WORK OF	RDER) #	W 19 :	a 474		
Tel. (207) 874-2400 Fax (207) 775-4029				P/	4GE:	2	OF	_2		
1 dx (251) 110 4020				C	00LER:	<u> </u>	OF	<u>ə</u>		
CLIENT: Tetra Tech		_		SI Da	OC# DG# ATE / TIME R			591	(100	
PROJECT: CNC Charles	_		DELIVERED BY: FEDEX RECEIVED BY: 5 K LIMS ENTRY BY: BE-K LIMS REVIEW BY / PM: A3 C							
	YES	NO	EXCEPTIONS	COMMENTS	5		RES	SOLUTION		
1. CUSTODY SEALS PRESENT / INTACT?										
2.CHAIN OF CUSTODY PRESENT IN THIS COOLER?									<del></del>	
3. CHAIN OF CUSTODY SIGNED BY CLIENT?							·			
4. CHAIN OF CUSTODY MATCHES SAMPLES?			. 🔲							
5. TEMPERATURE BLANKS PRESENT?				TEMP BLAN	IK TEMP (°C)≔_	3.5				
6. SAMPLES RECEIVED AT 4°C + 2? ICE / ICE PACKS PRESENT (Y) or N?					EMP (*C )= COOLER TEMP (		BLANK IS	NOT PRESE	NT)	
7. VOLATILES FREE OF HEADSPACE?				NA			. <u> </u>			
8. TRIP BLANK PRESENT IN THIS COOLER				d_			<u> </u>			
9. PROPER SAMPLE CONTAINERS AND VOLUME?							. <u> </u>			
10. SAMPLES WITHIN HOLD TIME UPON RECEIPT?							<u> </u>			
11. SAMPLES PROPERLY PRESERVED ⁽¹⁾ ?										
12. CORRECTIVE ACTION REPORT FILED?		9	N/A						,	
13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMME	ERCIAL (	CLP HA	ZWRAP NFESC	ACOE AFCEE O	THER (STATE C	OF ORIGIN):				
LOG - IN NOTES ⁽¹⁾ :	-									
200 11110120										

Use this space (and additional sheets if necessary) to document samples that are received broken or compromised, C-O-C discrepancies, radiation checks, residual chlorine check, results of pH check if required. If samples required pH adjustment, record volume and type of preservative d.

# Katahdin S40 County Road No. 5 P.O. Box 720 Westbrook, ME 04098

# **CHAIN of CUSTODY**

Fax: (207) 775-4029					PLEASI	E PRINT	IN PEN		Page	e <u> </u>	. of <u> </u>
Tetra Tech AUS	Contac	t Hov	ء درا		Phone # 4고3 )	483-	.9900	Fax (	# )		
Ar NH-21 Ave. H City	Narth		desta			5C		ip Code	294	05	
Purchase Order # Proj. Name /	No.			2.1			Katahdin	Quote #		بي مع	
Bill (if different than above)	Ac	ddress									
Sampler (Print / Sign)						Copie	s To:				
LAB USE ONLY WORK ORDER #: WY 2474 -	*			ļ			ONTAINI VATIVES	ER TYPE			
KATAHDIN PROJECT MANAGER	<del></del>	Filt. □Y□N	Filt. □Y□N	Filt, OYON	Filt. □Y□N	Filt. □Y□N	Filt.	Filt. JYON	Filt. JYONO	Filt. JYON	
REMARKS:		ل ار		25 Q		:		:		:	90
SHIPPING INFO:	ENT	5+Napth 8670C	metals 60103	BTEX 82.03 En-Core 9071A	Sze	:	: : :				headspage / mct
TEMP°C TEMP BLANK INTACT NOT	INTACT	+	6 7	₹ ¹¹ 9	Z-\$		·     :		:	:	7
* Sample Description Date / Time Coll'd Matrix	No. of Cntrs.		7	के के	ς± π±	:	:		:		FID
18SLB05-0406 5/4/49/1120 5	6	X	X	_X_							0
188LB01-0203 5/14/0955 S	lo	X	X	_X_							0
1851B02-0405 5/14/0945 5	6	X	×	X							4
. 19SLB09-0405D 5/14/1140 S	5	X		Χ_							700
-18LB030506 5/14/0922 S	5	X		X							3
19817309-0405 5/14/0835 S	5	X		X						_	700
1981306-0506 5/14/0907 S	5	X		X							6
-195LB08-0405 5/14/0850 S	5	_χ		Χ_						;	<u>2</u> 000
Trip Bank 5/13/1515 W	1			X							
16SLB04-0304 5/14/1535 S	ව	X	<u>×</u>	Χ_	χ_					>7	८००३
165LB06-0304 5/14/1450 S	5	X	!	<u>X</u>	1						2
165LB10-0304 5/14/1505 S	5	X	_	X							<u>50</u>
163L803-0304 5/14/1545 S	5	X		Χ_							110
198LB16-0203 5/14/1515 S	5	×		Х							0
/											<u></u>
/				<u>.</u>		ï					
omments madels cancelled on 165	L804	+-0	304	- pe	er B	nyn	Hen 2	<u>e</u> 6	5/17/0	<del>?</del> વ	
Referrished By; (Signature)  Date / Time Received By:	(Signature	e) F	Relinquish	ned By: (\$	Signature	- 1	ite/ / Tim	ie o i i Br	celved B	y: (Sign	ature)
Helinquished By: (Signature)  Date / Time Received By:			Relinguist	ned Bv: (	Signature	- 05 Di	//7/99 ate / Tim		eceived B		
FEDEX 5/15/19 1100 Steve it.								_		, · \-''	



Client:

Amold Lamb

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2474-14

SDG:

WP2474 6/14/99

Report Date: PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

Method:

SW8260

Date Analyzed:

5/26/99

Sample Description	Matrix	Samj	oled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
02TL00201 TRIP BLANK	SL	5/	13/99	5/15/99	5/26/99	JSS	5030	JSS
Compound	Re	sult	Units	DF	Sample PQL	Method PQL		_
BENZENE		<5	ug/Kgdrywt	1.0	5	5		
TOLUENE		<b>-</b> 5	ug/Kgdrywt	1.0	5	5		
1,2-DIBROMOETHANE	•	<b>&lt;</b> 5	ug/Kgdrywt	1.0	5	5		
ETHYLBENZENE	•	<b>&lt;</b> 5	ug/Kgdrywt	1.0	5	5		
NAPHTHALENE	•	<5	ug/Kgdrywt	1.0	5	5		
MTBE	•	<b>5</b>	ug/Kgdrywt	1.0	5	5		
TOTAL XYLENES	•	<b>5</b>	ug/Kgdrywt	1.0	5	5		, :
DIBROMOFLUOROMETHANE	8	31	%	1.0				, ,
1,2-DICHLOROETHANE-D4	8	31	%	1.0				
TOLUENE-D8	ε	37	%	1.0				
P-BROMOFLUOROBENZENE	ε	31	%	1.0				

Report Notes:



'ient:

Arnold Lamb

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2474-2

SDG:

WP2474

Report Date:

6/14/99 N7912-P99264

PO No.: Project:

CTO #68

% Solids:

90

Method:

SW8260

Date Analyzed: 5/20/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
18SLB01-0203	SL 5/14/99		5/15/99	5/20/99	KMC	5030	KMC
Compound	Res	ult Units	DF	Sample PQL	Method PQL		
BENZENÉ	<6	5 ug/Kg	1.1	6	5		
TOLUENE	<6	6 ug/Kg	1.1	6	5		
1,2-DIBROMOETHANE	<6	6 ug/Kg	1.1	6	5		
ETHYLBENZENE	<6	6 ug/Kg	1.1	6	5		
NAPHTHALENE	<6	S ug/Kg	1.1	6	5		
MTBE	<6	3 ug/Kg	1.1	6	5		
TOTAL XYLENES	<6	6 ug/Kg	1.1	6	5		
DIBROMOFLUOROMETHANE	89	9 %	1.1				•
12-DICHLOROETHANE-D4	93	3 %	1.1			,-	
CUENE-D8	81	1 %	1.1				
P-BROMOFLUOROBENZENE	71	l %	1.1				

Report Notes:



Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2474-2

SDG:

WP2474

Report Date:

7/12/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

90

Method: Date Analyzed: 6/28/99

EPA 8270

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
18SLB01-0203	\$L	SL 5/14/99		5/26/99	DPD	EPA 3550	sw
Compound	Re	sult Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<4	00 ug/Kg	1.2	400	330		
2-METHYLNAPHTHALENE	<4	00 ug/Kg	1.2	400	330		
ACENAPHTHYLENE	<4	00 ug/Kg	1.2	400	330		
ACENAPHTHENE	<4	00 ug/Kg	1.2	400	330		
FLUORENE	<4	00 ug/Kg	1.2	400	330		
PHENANTHRENE	<4	00 ug/Kg	1.2	400	330		
ANTHRACENE	<4	00 ug/Kg	1.2	400	330		
FLUORANTHENE	<4	100 ug/Kg	1.2	400	330		· '.
PYRENE	<4	100 ug/Kg	1.2	400	330	4.	
BENZO[A]ANTHRACENE	<4	00 ug/Kg	1.2	400	330	, ,	
CHRYSENE	<4	00 ug/Kg	1.2	400	330		
BENZO[B]FLUORANTHENE	<4	00 ug/Kg	1.2	400	330		
BENZO[K]FLUORANTHENE	<4	00 ug/Kg	1.2	400	330		
BENZO[A]PYRENE	<4	00 ug/Kg	1.2	400	330		
INDENO[1,2,3-CD]PYRENE	<4	00 ug/Kg	1.2	400	330		
DIBENZ[A,H]ANTHRACENE	<4	00 ug/Kg	1.2	400	330		
BENZO[G,H,I]PERYLENE	<4	00 ug/Kg	1.2	400	330		
NITROBENZENE-D5	9		1.2				
2-FLUOROBIPHENYL	9	3 %	1.2				
TERPHENYL-D14	#1	63 %	1.2				

11

Report Notes:

#, O-13



`lient: Paul Calligan

> Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2474-2RA

SDG:

WP2474 7/12/99

Report Date: PO No.:

Project:

N7912-P99264 CTO #68

% Solids:

90

Method:

**EPA 8270** 

Date Analyzed: 6/29/99

Sample Description	Matrix Sa	mpled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
18SLB01-0203	SL	5/14/99	14/99 5/15/99		DPD	EPA 3550	KRT
Compound	Result	Units	DF	Sample PQL	Method PQI_		
NAPHTHALENE	<400	ug/Kg	1.2	400	330		
2-METHYLNAPHTHALENE	<400	ug/Kg	1.2	400	330		
ACENAPHTHYLENE	<400	ug/Kg	1.2	400	330		
ACENAPHTHENE	<400	ug/Kg	1.2	400	330		
FLUORENE	<400	ug/Kg	1.2	400	330		
PHENANTHRENE	<400	ug/Kg	1.2	400	330		
ANTHRACENE	<400	ug/Kg	1.2	400	330		
FLUORANTHENE	<400	ug/iKg	1.2	400	330		• •
PYRENE	<400	ug/Kg	1.2	400	330	,•	
ENZO[A]ANTHRACENE	<400	ug/Kg	1.2	400	330		
CHRYSENE	<400	ug/Kg	1.2	400	330		
BENZO[B]FLUORANTHENE	<400	ug/Kg	1.2	400	330		
BENZO(K)FLUORANTHENE	<400	ug/Kg	1.2	400	330		
BENZO[A]PYRENE	<400	ug/Kg	1.2	400	330		
INDENO[1,2,3-CD]PYRENE	<400	ug/Kg	1.2	400	330		
DIBENZ[A,H]ANTHRACENE	<400	ug/Kg	1.2	400	330		
BENZO[G,H,I]PERYLENE	<400	ug/Kg	1.2	400	330		
NITROBENZENE-D5	83	%	1.2				
2-FLUOROBIPHENYL	87	%	1.2				
TERPHENYL-D14	105	%	1.2				

Report Notes:

0-13

#### I INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: 18SLB01-0203

Matrix: SOIL

SDG Name:

WP2474

Percent Solids: 89.6

Lab Sample ID: WP2474-002

Concentration Units (ug/L or mg/Kg dry weight): mg/Kg

CAS No.	Analyte	Concentration	C	Q	M	DF	
7429-90-5	ALUMINUM	3410			P	1	
7440-36-0	ANTIMONY	0.16	U		P	1	
7440-38-2	ARSENIC	5.8			P	1	
7440-39-3	BARIUM	11.0			P	1	
7440-41-7	BERYLLIUM	0.37	В		P	1	
7440-43-9	CADMIUM	0.35	В		P	1	
7440-70-2	CALCIUM	11100			P	1	
7440-47-3	CHROMIUM	10.4			P	1	
7440-48-4	COBALT	1.5	В		P	1	
7440-50-8	COPPER	15.3			P	1	
7439-89-6	IRON	7160			P	1	
7439-92-1	LEAD	16.1			P	1	
7439-95-4	MAGNESIUM	882			P	1	
7439-96-5	MANGANESE	56.8			P	1	# .
7439-97-6	MERCURY	0.04		*	CV	1	,=
7440-02-0	NICKEL	9.2			P	i	,-
7440-09-7	POTASSIUM	454			P	1	
7782-49-2	SELENIUM	0.56	В		P	1	
7440-22-4	SILVER	0.22	U		P	1	
7440-23-5	SODIUM	98.0			P	I	
7440-28-0	THALLIUM	0.39	U		P	1	
7440-62-2	VANADIUM	69.2			P	I	
7440-66-6	ZINC	43.3			P	I	

Color Before: BROWN

Texture: MEDIUM

Color After: YELLOW

Clarity After: CLEAR

Comments:

Client:

Katahdin Analytical

340 County Road

Westbrook, Maine 04092

Contact:

Ms. Andrea Colby

Project Description:

Former Naval Complex

cc: KATA00199

Report Date: June 04, 1999

Page 1 of 1

Sample ID Lab ID : 18SLB01-0203

Matrix Date Collected : 9905519-02 : Soil

Date Collected

Date Received

: 05/14/99 : 05/14/99

Priority

: Routine

Collector

: Client

Parameter	Qualifler	Result	DL	RL	Units	DF	Analy	st Date	Time	Batch	M
General Chemistry											
Total Rec. Petro. Hy	drocarbons	308	55.0	110	mg/kg	1.0	AAT	06/04/99	0830	150617	1
Evaporative Loss @	105 C	9.00	00.1	00.1	wt%	1.0	G١	05/18/99	1600	149376	2

M = Method	Method-Description	
M 1	SW846 9071A	
M 2	EPA 3550	

#### Notes:

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

I indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

Data reported in mass/mass units is reported as 'dry weight'.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct any questions to your Project Manager, Valerie Davis at (843) 769-7391.

Reviewed By

^{*} indicates that a quality control analyte recovery is outside of specified acceptance criteria.



Client: Arnold Lamb

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2474-3

SDG:

WP2474

Report Date:

6/14/99 N7912-P99264

PO No. : Project:

CTO #68

% Solids:

80

Method:

SW8260

Date Analyzed: 5/24/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
18SLB02-0405	SL	5/14/99	5/15/99	5/24/99	KMC	5030	КМС
Compound	Re	sult Units	DF	Sample PQL	Method PQL		
BENZENE	<		1.2	6	5		
TOLUENE	<	:6 ug/Kg	1.2	6	5		
1,2-DIBROMOETHANE	<	6 ug/Kg	1.2	6	5		
ETHYLBENZENE	<	6 ug/Kg	1.2	6	5		
NAPHTHALENE	<	6 ug/Kg	1,2	6	5		
MTBE	•	6 ug/Kg	1.2	6	5		
TOTAL XYLENES	<	6 ug/Kg	1.2	6	5		, :
DIBROMOFLUOROMETHANE	9	5 %	1.2				
1,2-DICHLOROETHANE-D4	9	95 %	1.2				
TOLUENE-D8	8	37 <b>%</b>	1.2				
P-BROMOFLUOROBENZENE	7	7 %	1.2				

Report Notes:

1



⁻lient:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Taliahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2474-3

SDG:

WP2474 7/12/99

Report Date: PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

80

Method:

EPA 8270

Date Analyzed: 6/30/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
18SLB02-0405	SL	5/14/99	5/15/99	5/26/99	DPD	EPA 3550	KRT
Compound	Res	sult Units	DF	Sample PQL	Method PGL	_	
NAPHTHALENE	<4	160 ug/Kg	1.4	460	330		
2-METHYLNAPHTHALENE	<4	160 ug/Kg	1.4	460	330		
ACENAPHTHYLENE	<4	160 ug/Kg	1.4	460	330		
ACENAPHTHENE	<4	160 ug/Kg	1.4	460	330		
FLUORENE	<4	160 ug/Kg	1.4	460	330		
PHENANTHRENE	<4	160 ug/Kg	1.4	460	330		
ANTHRACENE	<4	160 ug/Kg	1.4	460	330		<b>4</b> 2.
FLUORANTHENE	<4	160 ug/Kg	1.4	460	330		4
PYRENE	<4	160 ug/Kg	1.4	460	330	·,*•	
<b>ENZO[A]ANTHRACENE</b>	<4	160 ug/Kg	1.4	460	330		
CHRYSENE	<4	160 ug/Kg	1.4	460	330		
BENZO[B]FLUORANTHENE	<4	160 ug/Kg	1.4	460	330	•	
BENZO[K]FLUORANTHENE	<4	160 ug/Kg	1.4	460	330		
BENZO[A]PYRENE	<4	160 ug/Kg	1.4	460	330		
INDENO[1,2,3-CD]PYRENE	<4	160 ug/Kg	1.4	460	330		
DIBENZĮA,HJANTHRACENE	<4	160 ug/Kg	1.4	460	330		
BENZO[G,H,I]PERYLENE	<4	160 ug/Kg	1.4	460	330		
NITROBENZENE-D5	7	2 %	1.4				
2-FLUOROBIPHENYL	7	′1 %	1.4				
TERPHENYL-D14	8	32 %	1.4				

्रन्सेeport Notes:

Client:

Katahdin Analytical

340 County Road

Westbrook, Maine 04092

Contact:

Ms. Andrea Colby

Project Description:

Former Naval Complex

cc: KATA00199

Report Date: June 04, 1999

Page 1 of i

 Sample ID
 : 18SLB02-0405

 Lab ID
 : 9905519-01

 Matrix
 : Soil

 Date Collected
 : 05/14/99

 Date Received
 : 05/14/99

 Priority
 : Routine

 Collector
 : Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analy	st Date	Time	Batch M
General Chemistry Total Rec. Petro. H Evaporative Loss 6	ydrocarbons	160 19.0	61.5 1.00	123 1.00	mg/kg wt%		AAT GJ	06/04/99 05/18/99		150617 1 149376 2

·		
M = Method	Method-Description	
M 1	SW846 907LA	
M 2	EPA 3550	

#### Notes:

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

I indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

Data reported in mass/mass units is reported as 'dry weight'.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct any questions to your Project Manager, Valerie Davis at (843) 769-7391.

Reviewed By

I SI BER MUSE HILL BUSH 1772 BUSH 2019 FOXI HEAR DOCK 831

indicates that a quality control analyte recovery is outside of specified acceptance criteria.



CLIENT: Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number: WP-2474-2

Report Date: 07/13/99

PO No. : N7912-P99264 Project : CTO #68

WIC#: CNC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 2 of 13

SAMPLE DESCRIPTION MA		MATRIX	ATRIX S		SAMPLED BY		SAMPLED DATE		RECEIVED
18SLB01-0203		Solid			CLIENT		05/14/99		05/15/99
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD		ANALYZED	BY	NOTES
Solids-Total Residue (TS)	90.	wt %	1.0	0.10	CLP/CIP	SOW	05/18/99	JF	1

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect samplespecific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

(1) Sample Preparation on 05/17/99 by JF

07/13/99

LJO/baeajc (dw) /msm

CC: MS. LEE LECK TETRA TECH NUS FOSTER PLAZA 7 661 ANDERSEN DR.

## INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: 18SLB02-0405

Matrix: SOIL

SDG Name:

WP2474

Percent Solids: 80.2

Lab Sample ID: WP2474-003

Concentration Units (ug/L or mg/Kg dry weight): mg/Kg

CAS No.	Analyte	Concentration	C	Q	M	DF	_	
7429-90-5	ALUMINUM	1630			P	1		
7440-36-0	ANTIMONY	0.14	U		P	1		
7440-38-2	ARSENIC	1.5			P	1		
7440-39-3	BARIUM	5.0			P	1		
7440-41-7	BERYLLIUM	0.32	В		P	1		
7440-43-9	CADMIUM	0.16	В		P	1		
7440-70-2	CALCIUM	3380			P	1		
7440-47-3	CHROMIUM	4.8			P	1		
7440-48-4	COBALT	0.57	В		P	ı		
7440-50-8	COPPER	0.84	В		P	1		
7439-89-6	IRON	2540			P	1		
7439-92-1	LEAD	2.5			P	1		
7439-95-4	MAGNESIUM	432			P	1		
7439-96-5	MANGANESE	18.2			P	1		, ·
7439-97-6	MERCURY	0.02	В		CV	I	٠.	
7440-02-0	NICKEL	1.04	U		P	1		
7440-09 <b>-</b> 7	POTASSIUM	266			P	I		
7782-49-2	SELENIUM	0.2 I	В		P	I		
7440-22-4	SILVER	0.20	U		P	I		
7440-23-5	SODIUM	128			P	1		
7440-28-0	THALLIUM	0.35	U		P	1		
7440-62-2	VANADIUM	5.5			P	1		
7440-66-6	ZINC	6.0			P	1		

Color Before: BROWN

Texture: MEDIUM

Color After: YELLOW

Clarity After: CLEAR

Comments:



Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number : WP-2474-3

Report Date: 07/13/99 PO No. : N7912-P99264

Project : CTO #68

WIC#: CNC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 3 of 13

SAMPLE DESCRIPTION		MATRIX		SAMPLI	ED BY	SAMPLED D	ATE	RECEIVED
18 <i>SL</i> B02-0405		Solid		CLIEN	Г	05/14/9	19	05/15/99
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	 ANALYZED	BY	NOTES
Solids-Total Residue (TS)	80.	wt 8	1.0			 05/18/99		

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

(1) Sample Preparation on 05/17/99 by JF

07/13/99

LJO/baeajc(dw)/msm



Client:

Arnold Lamb

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2474-1

SDG:

WP2474

Report Date:

6/14/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

70

Method:

SW8260

Date Analyzed: 5/20/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
18SLB05-0406	SL	5/14/99	5/15/99	5/20/99	KMC	5030	KMC
Compound	Res	ult Units	DF	Sample PQL	Method PQL		
BENZENE	<1	0 ug/Kg	2.1	10	5		- · · · · ·
TOLUENE	<1	0 ug/Kg	2.1	10	5		
1,2-DIBROMOETHANE	<1	0 ug/Kg	2.1	10	5		
ETHYLBENZENE	<1	0 ug/Kg	2.1	10	5		
NAPHTHALENE	<1	0 ug/Kg	2.1	10	5		
MTBE	<1	0 ug/Kg	2.1	10	5		
TOTAL XYLENES	<1	0 ug/Kg	2.1	10	5		
DIBROMOFLUOROMETHANE	90	) %	2.1				·
1,2-DICHLOROETHANE-D4	96	3 %	2.1				
TOLUENE-D8	81	J %	2.1				
P-BROMOFLUOROBENZENE	78	3 %	2.1				

Report Notes:



Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2474-1

SDG:

WP2474

Report Date: PO No.:

7/12/99

N7912-P99264

Project:

CTO #68

% Solids:

70

Method:

EPA 8270

Date Analyzed: 6/28/99

Sample Description	Matrix Sa	impled Date	Rec'd Date	Ext. Date	Ext'd By	Ext, Method	Analyst
18SLB05-0406	SL	5/14/99	5/15/99	5/26/99	DPD	EPA 3550	sw
Compound	Result	Units	DF	Sample PQI	Method PQL	_	
NAPHTHALENE	<530	ug/Kg	1.6	530	330		
2-METHYLNAPHTHALENE	<530	ug/Kg	1.6	530	330		
ACENAPHTHYLENE	<530	ug/Kg	1.6	530	330		
ACENAPHTHENE	640	ug/Kg	1.6	530	330		
FLUORENE	<530	ug/Kg	1.6	530	330		
PHENANTHRENE	<530	ug/Kg	1,6	530	330		
ANTHRACENE	<530	ug/Kg	1.6	530	330		, ,
FLUORANTHENE	<530	ug/Kg	1.6	530	330		, ,
PYRENE	<530	ug/Kg	1.6	530	330	(*	
ENZO[AJANTHRACENE	<530	ug/Kg	1.6	530	330		
CHRYSENE	<530	ug/Kg	1.6	530	330		
BENZO[B]FLUORANTHENE	<530	ug/Kg	1.6	530	330		
BENZO[K]FLUORANTHENE	<530	ug/Kg	1,6	530	330		
BENZO[A]PYRENE	<530	ug/Kg	1.6	530	330		
INDENO[1,2,3-CD]PYRENE	<530	ug/Kg	1.6	530	330		
DIBENZ(A,HJANTHRACENE	<530	ug/Kg	1.6	530	330		
BENZO[G,H,I]PERYLENE	<530	ug/Kg	1.6	530	330		
NITROBENZENE-D5	56	%	1.6				
2-FLUOROBIPHENYL	67	%	1.6				
TERPHENYL-014	84	%	1.6				

eport Notes:

Client:

Katahdin Analytical

340 County Road

Westbrook, Maine 04092

Contact:

Ms. Andrea Colby

Project Description:

Former Naval Complex

cc: KATA00199

Report Date: June 04, 1999

Page 1 of 1

Sample ID Lab ID

: 18SLB05-0406 : 9905519-03

Matrix Date Collected : Soil : 05/14/99

Date Received

: 05/14/99 : Routine

Priority Collector

: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analy	st Date	Time	Batch	M
General Chemistr	· · ·				_ <del></del>		_				
Total Rec. Petro. 1	Hydrocarbons	370	66.0	132	mg/kg	1.0	AAT	06/04/99	0830	150617	7 1
Evaporative Loss	@ 105 C	24.0	1.00	1.00	wt%	1.0	G1	05/18/99	1600	14937	5 2

M = Method	Method-Description	
<b>M</b> 1	SW846 9071A	
M 2	EPA 3550	

#### Notes:

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

I indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

* indicates that a quality control analyte recovery is outside of specified acceptance criteria.

Data reported in mass/mass units is reported as 'dry weight'.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct

any questions to your Project Manager, Valerie Davis at (843) 769-7391.

Reviewed By

#### INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: 18SLB05-0406

Matrix: SOIL

SDG Name:

WP2474

Percent Solids: 70.2

Lab Sample ID: WP2474-001

Concentration Units (ug/L or mg/Kg dry weight): mg/Kg

CAS No.	Analyte	Concentration	C	Q	M	DF		
7429-90-5	ALUMINUM	4000			P	1		
7440-36-0	ANTIMONY	0.18	U		P	1		
7440-38-2	ARSENIC	5.0			P	1		
7440-39-3	BARIUM	11.9			P	1		
7440-41-7	BERYLLIUM	0.43	В		P	1		
7440-43-9	CADMIUM	0.38	В		P	1		
7440-70-2	CALCIÚM	36800			P	1		
7440-47-3	CHROMIUM	12.1			P	1		
7440-48-4	COBALT	1.5	В		P	1		
7440-50-8	COPPER	6.0			P	1		
7439-89-6	IRON	6570			P	1		
7439-92-1	LEAD	6.4			P	1		
7439 <b>-9</b> 5-4	MAGNESIUM	1750			P	1		
7439-96-5	MANGANESE	72.8			P	1		* · · *
7439-97-6	MERCURY	0.05		•	CV	1	.1	
7440-02-0	NICKEL	5.4			P	1		
7440-09-7	POTASSIUM	547			P	1		
7782-49-2	SELENIUM	0.38	В		P	1		
7440-22-4	SILVER	0.25	U		P	1		
7440-23-5	SODIUM	377			P	1		
7440-28-0	THALLIUM	0.45	U		P	1		
7440-62-2	VANADIUM	13.0			P	1		
7440-66-6	ZINC	21.8			P	1		

Color Before: BROWN

Texture: MEDIUM

Color After: YELLOW

Clarity After: CLEAR

Comments:

FORM I - IN



Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number : WP-2474-1 Report Date: 07/13/99 PO No. : N7912-P99264

PO No. Project

: CTO #68

WIC#: ONC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 1 of 13

SAMPLE DESCRIPTION		MATRIX		SAMPL	ED BY	SAMPLED D	RECEIVED	
18SLB05-0406		Solid		CLIEN	r	05/14/9	9	05/15/99
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES
Solids-Total Residue (TS)	70.	wt &	1.0	0.10	CLP/CIP SO	W 05/18/99	JF	1

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

(1) Sample Preparation on 05/17/99 by JF

07/13/99

LJO/baeajc(dw)/msm



Client:

Arnold Lamb

Tetra Tech NUS 1401 Öven Park Dr.

Suite 102

Taliahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2474-4

SDG:

WP2474

Report Date:

6/14/99

PO No.:

N7912-P99264 CTO #68

Project:

% Solids:

74

Method:

SW8260

Date Analyzed: 5/24/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
19SLB09-0405D	SL	5/14/99	5/15/99	5/24/99	KRT	5030	KRT
Compound	Res	ult Units	DF	Sample PQL	Method PQL		
BENZENE	<90	00 ug/Kgdrywt	180	900	5		
TOLUENE	<90	00 ug/Kgdrywt	180	900	5		
1,2-DIBROMOETHANE	<90	00 ug/Kgdrywt	180	900	5		
ETHYLBENZENE	<90	00 ug/Kgdrywt	180	900	5		
NAPHTHALENE	<90	00 ug/Kgdrywt	180	900	5		
MTBE	<90	00 ug/Kgdrywt	180	900	5		
TOTAL XYLENES	<90	00 ug/Kgdrywt	180	900	5		, ,
DIBROMOFLUOROMETHANE	98	3 <del>%</del>	180				,
1,2-DICHLOROETHANE-D4	94	<b>%</b>	180			,•	
)LUENE-D8	98	3 %	180				
~-BROMOFLUOROBENZENE	94	¥ %	180				

**≱port Notes:** 

O-1



Client: Arnold Lamb

> Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2474-6

SDG:

WP2474 6/14/99

Report Date: PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

73

Method:

SW8260

Date Analyzed: 5/26/99

Sample Description	Matrix	Sam	oled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
19SLB09-0405	SL	5/	14/99	5/15/99	5/26/99	SSL	5030	JSS
Compound	Re	esult	Units	DF	Sample PQL	Method PQL		
BENZENE		<b>&lt;</b> 6	ug/Kg	1.2	6	 5		_
TOLUENE		<6	ug/Kg	1.2	6	5		
1,2-DIBROMOETHANE		<6	ug/Kg	1.2	6	5		
ETHYLBENZENE		<6	ug/Kg	1.2	6	5		
NAPHTHALENE		<6	ug/Kg	1.2	6	5		
MTBE	•	<6	ug/Kg	1.2	6	5		
TOTAL XYLENES	,	<6	ug/Kg	1.2	6	5		
DIBROMOFLUOROMETHANE	\$	24	%	1.2				•
1,2-DICHLOROETHANE-D4	\$	32	%	1.2				
TOLUENE-D8	;	\$8	%	1.2				
P-BROMOFLUOROBENZENE		\$4	%	1.2				

Report Notes:

**\$**, O-13



Client:

Arnold Lamb

Tetra Tech NUS

1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2474-6RE

SDG:

WP2474

Report Date:

6/14/99

PO No, :

N7912-P99264

Project:

CTO #68

% Solids:

73

Method:

SW8260

Date Analyzed: 5/26/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
19SLB09-0405	SL	5/14/99	5/15/99	5/26/99	KMC	5030	KMC
Compound	Resu	ult Units	DF	Sample PQL	Method PQL		
BENZENE	<6	ug/Kg	1.2	6	5		
TOLUENE	<6	ug/Kg	1,2	6	5		
,2-DIBROMOETHANE	<6	ug/Kg	1,2	6	5		
ETHYLBENZENE	<6	ug/Kg	1.2	6	5		
NAPHTHALENE	<6	ug/Kg	1,2	6	5		
MTBE	<6	ug/Kg	1.2	6	5		
TOTAL XYLENES	<6	= -	1.2	6	5		, :
DIBROMOFLUOROMETHANE	\$62	2 %	1.2				
1,2-DICHLOROETHANE-D4	86	%	1,2			,•	
DLUENE-D8	\$40	) %	1.2				
P-BROMOFLUOROBENZENE	\$52	2 %	1.2				

Report Notes:

\$, 01-3



Client:

Arnold Lamb

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2474-5

SDG:

WP2474

Report Date: PO No.:

6/14/99

Project:

N7912-P99264

CTO #68

% Solids:

Method:

SW8260

Date Analyzed: 5/26/99

Sample Description	Matrix	Sam	pled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
19SLB03-0506	SL	5.	/14/99	5/15/99	5/26/99	КМС	5030	кмс
Compound	Ro	esuit	Units	DF	Sample PQL	Method PQL		
BENZENE		<6	ug/Kg	1.3	6	5		
TOLUENE		<6	ug/Kg	1.3	6	5		
1,2-DIBROMOETHANE		<6	ug/Kg	1.3	6	5		
ETHYLBENZENE		<6	ug/Kg	1.3	6	5		
NAPHTHALENE		<6	ug/Kg	1.3	6	5		
MTBE		<6	ug/Kg	1.3	6	5		
TOTAL XYLENES		<6	ug/Kg	1.3	6	5		
DIBROMOFLUOROMETHANE	1	22	%	1.3				•
1,2-DICHLOROETHANE-D4	1	19	%	1.3				
TOLUENE-D8	1	22	%	1.3				
P-BROMOFLUOROBENZENE	1	04	%	1,3				

Report Notes:



Client:

Arnold Lamb

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2474-7

SDG:

WP2474 6/14/99

Report Date:

N7912-P99264

PO No.: Project:

CTO #68

% Solids:

83

Method:

SW8260

Date Analyzed: 5/26/99

Sample Description	Matrix S	ampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
9SLB06-0506	SL 5/14/99		5/15/99	5/26/99	JSS	5030	JSS
Compound	Resu	it Units	OF	Sample PQL	Method PQL		
BENZENE	<6	ug/Kg	1,2	6	5	-	
TOLUENE	<6	ug/Kg	1.2	6	5		
1,2-DIBROMOETHANE	<6	ug/Kg	1.2	6	5		
ETHYLBENZENE	<6	ug/Kg	1.2	6	5		
NAPHTHALENE	<6	ug/Kg	1,2	6	5		
MTBE	<6	ug/Kg	1.2	6	5		
TOTAL XYLENES	<6	ug/Kg	1.2	6	5		
DIBROMOFLUOROMETHANE	102	%	1.2				-
1,2-DICHLOROETHANE-D4	105	%	1.2			,.	
LUENE-D8	97	%	1,2				
BROMOFLUOROBENZENE	91	%	1.2				

port Notes:



Client: Arnold Lamb

Tetra Tech NUS 1401 Oven Park Dr

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number;

WP2474-8

SDG:

WP2474

Report Date:

6/14/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

7B

Method:

SW8260

Date Analyzed: 5/26/99

Sample Description	Matrix Sampled Date SL 5/14/99		e Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst	
19SLB08-0405			5/15/99	5/26/99	KMC	5030		
Compound	Re	suit Uni	ts DF	Sample PQL	Method PQL			
BENZENE	•		1.2	6	5			
TOLUENE	•	<6 ug/Kg	1.2	6	5			
1,2-DIBROMOETHANE	•	⊲6 ug/Kg	1.2	6	5			
ETHYLBENZENE	5	66 ug/Kg	1.2	6	5			
NAPHTHALENE	E	80 ug/Kg	1.2	6	5			
MTBE		<6 ug/Kg	1.2	6	5			
TOTAL XYLENES	9	02 ug/Kg	1.2	6	5		, .	
DIBROMOFLUOROMETHANE	1	12 %	1.2				•	
1,2-DICHLOROETHANE-D4	1	09 %	1.2			,•		
TOLUENE-D8	1	07 %	1.2					
P-BROMOFLUOROBENZENE	#1	156 %	1.2					

Report Notes:

E,#

ı



Client:

Amold Lamb

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2474-8DL

SDG:

WP2474 6/14/99

Report Date: PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

78

Method:

SW8260

Date Analyzed: 5/26/99

Sample Description	Matrix S	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst	
9SLB08-0405	SL 5/14/99		5/15/99	5/26/99	НМР	5035	HMP	
Compound	Resu	lt Units	DF	Sample PQI	Method PQL			
BENZENE	<600	ug/Kgdrywt	120	600	5			
TOLUENE	<600	ug/Kgdrywt	120	600	5			
1,2-DIBROMOETHANE	<600	ug/Kgdrywt	120	600	5			
ETHYLBENZENE	<600	ug/Kgdrywt	120	600	5			
NAPHTHALENE	J450	ug/Kgdrywt	120	600	5			
MTBE	<600	ug/Kgdrywt	120	600	5			
TOTAL XYLENES	J340	ug/Kgdrywt	120	600	5		, ,	
DIBROMOFLUOROMETHANE	96	%.	120				·	
1,2-DICHLOROETHANE-D4	94	%	120					
DLUENE-D8	97	%	120					
BROMOFLUOROBENZENE	96	%	120					

port Notes:

J, O-2



Client: Amold Lamb

> Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2474-12DL

SDG:

WP2474

Report Date: PO No.:

6/14/99

Project:

N7912-P99264 CTO #68

% Solids:

81

Method:

SW8260

Date Analyzed: 5/27/99

Sample Description	Matrix S	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst	
19SLB16-0203	SL	5/14/99	5/15/99	5/27/99	HMP	5035	НМР	
Compound	Resu	tt Units	DF	Sample PQL	Method PQL			
BENZENE	<5	ug/Kgdrywt	1.0	5	5			
TOLUENE	<5	ug/Kgdrywt	1.0	5	5			
1,2-DIBROMOETHANE	<5	ug/Kgdrywt	1.0	5	5			
ETHYLBENZENE	<5	ug/Kgdrywt	1.0	5	5			
NAPHTHALENE	<5	ug/Kgdrywt	1.0	5	5			
MTBE	<5	ug/Kgdrywt	1.0	5	5			
TOTAL XYLENES	<5	ug/Kgdrywt	1.0	5	5			
DIBROMOFLUOROMETHANE	93	%	1.0				, .	
1,2-DICHLOROETHANE-D4	88	%	1.0					
TOLUENE-D8	92	%	1.0					
P-BROMOFLUOROBENZENE	98	%	1.0					

**Report Notes:** 



∩lient: Arnold Lamb

Tetra Tech NUS

1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2474-12

SDG:

WP2474

Report Date:

6/14/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

81

Method: Date Analyzed: 5/26/99

SW8260

Sample Description	Matrix (	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
19SLB16-0203	SL 5/14/99		5/15/99	5/26/99	KMC	5030	кмс
Compound	Resu	lt Units	DF	Sample PQL	Method PQL		_
BENZENE	<7	ug/Kg	1.5	7	5	,	
TOLUENE	<7	ug/Kg	1.5	7	5		
1,2-DIBROMOETHANE	<7	ug/Kg	1.5	7	5		
ETHYLBENZENE	<7	ug/Kg	1.5	7	5		
NAPHTHALENE	J5	ug/Kg	1.5	7	5		
MTBE	<7	ug/Kg	1.5	7	5		
TOTAL XYLENES	<7	ug/Kg	1.5	7	5		
DIBROMOFLUOROMETHANE	119	%	1 1.5				•
1,2-DICHLOROETHANE-D4	116	%	1.5			••	
CLUENE-D8	110	%	- 1.5				
P-BROMOFLUOROBENZENE	77	%	1.5				

.eport Notes:

J, O-13

1



Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2474-4

SDG:

WP2474

Report Date: PO No.:

7/12/99 N7912-P99264

Project:

CTO #68

% Solids:

74

Method:

EPA 8270

Date Analyzed: 6/30/99

Sample Description	Matrix	Matrix Sampled Date SL 5/14/99		npled Date Rec'd Date		Ext'd By	Ext. Method	Analyst
19SLB09-0405D	SL			5/1 <b>5/99</b>	5/26/99	DPD	EPA 3550	KRT
Compound	Re	esult	Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	J	380	ug/Kg	1.5	500	330		
2-METHYLNAPHTHALENE	1	500	ug/Kg	1.5	500	330		
ACENAPHTHYLENE	<	500	ug/Kg	1.5	500	330		
ACENAPHTHENE	7	790	ug/Kg	1.5	500	330		
FLUORENE	8	320	ug/Kg	1.5	500	330		
PHENANTHRENE	7	750	ug/Kg	1.5	500	330		
ANTHRACENE	J	280	ug/Kg	1.5	500	330		100
FLUORANTHENE	5	560	ug/iKg	1.5	500	330		* * *
PYRENE	5	570	ug/Kg	1.5	500	330	11	
BENZO[A]ANTHRACENE	<	500	ug/Kg	1.5	500	330	-	
CHRYSENE	J	260	ug/Kg	1.5	500	330		
BENZO[B]FLUORANTHENE	J	300	ug/Kg	1.5	500	330	•	
BENZO[K]FLUORANTHENE	<	500	ug/Kg	1.5	500	330		
BENZO[A]PYRENE	<	500	ug/Kg	1.5	500	330		
INDENO[1,2,3-CD]PYRENE	<	500	ug/Kg	1.5	500	330		
DIBENZ[A,H]ANTHRACENE	<	500	ug/Kg	1.5	500	330		
BENZO[G,H,I]PERYLENE	<	500	ug/Kg	1.5	500	330		
NITROBENZENE-D5		77	%	1.5				
2-FLUOROBIPHENYL		84	%	1.5				
TERPHENYL-D14		85	%	1.5				

Report Notes:

J



Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2474-5

SDG:

WP2474 7/12/99

Report Date: PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

Method:

EPA 8270

Date Analyzed: 6/30/99

Sample Description	Matrix Sampled D		Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
19SLB03-0506	SL	SL 5/14/99		5/26/99	DPD	EPA 3550	KRT
Compound	Resul	t Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<530	ug/Kg	1.6	530	330		
2-METHYLNAPHTHALENE	<530	ug/Kg	1.6	530	330		
ACENAPHTHYLENE	<530	ug/Kg	1.6	530	330		
ACENAPHTHENE	<530	ug/Kg	1.6	530	330		
FLUORENE	<530	ug/Kg	1.6	530	330		
PHENANTHRENE	<530	ug/Kg	1.6	530	330		
ANTHRACENE	<530	ug/Kg	1.6	530	330		
FLUORANTHENE	<530	<u>ug</u> /К <b>g</b>	1.6	530	330		• 1
PYRENE	<530	ug/Kg	1.6	530	330	••	
ENZO[A]ANTHRACENE	<530	ug/Kg	1.6	530	330	••	
<b>HRYSENE</b>	<530	ug/Kg	1.6	530	330		
BENZO[B]FLUORANTHENE	<530	ug/Kg	1.6	530	330	•	
BENZO[K]FLUORANTHENE	<530	ug/Kg	1.6	530	330		
BENZO[A]PYRENE	<530	ug/Kg	1.6	530	330		
INDENO(1,2,3-CD)PYRENE	<530	ug/Kg	1.6	530	330		
DIBENZ[A,H]ANTHRACENE	<530	ug/Kg	1.6	530	330		
BENZO[G,H,I]PERYLENE	<530	ug/Kg	1.6	530	330		
NITROBENZENE-D5	96	%	1.6				
2-FLUOROBIPHENYL	97	%	1.6				
TERPHENYL-D14	114	%	1.6				

eport Notes:



Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2474-6

SDG:

WP2474

Report Date:

7/12/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

73

Method:

EPA 8270

Date Analyzed: 6/30/99

Sample Description	Matrix Sa	Matrix Sampled Date Re		Ext. Date	Ext'd By	Ext. Method	Analyst	
19SLB09-0405	SL 5/14/99		5/15/99	5/26/99	DPD	EPA 3550	KRT	
Compound	Result	Units	DF	Sample PQL	Method PQL			
NAPHTHALENE	J390	ug/Kg	1.5	500	330			
2-METHYLNAPHTHALENE	660	ug/Kg	1.5	500	330			
ACENAPHTHYLENE	<500	ug/Kg	1.5	500	330			
ACENAPHTHENE	2600	ug/Kg	1,5	500	330			
FLUORENE	720	ug/Kg	1.5	500	330			
PHENANTHRENE	J370	ug/Kg	1.5	500	330			
ANTHRACENE	<500	ug/Kg	1.5	500	330			
FLUORANTHENE	<500	ug/Kg	1.5	500	330		4 %	
PYRENE	<500	ug/Kg	1.5	500	330	*7*		
BENZO[A]ANTHRACENE	<500	ug/Kg	1.5	500	330	•,•		
CHRYSENE	<500	ug/Kg	1,5	500	330			
BENZO[B]FLUORANTHENE	<500	ug/Kg	1.5	500	330			
BENZO[K]FLUORANTHENE	<500	ug/Kg	1,5	500	330			
BENZO[A]PYRENE	<500	ug/Kg	1.5	500	330			
INDENO[1,2,3-CD]PYRENE	<500	ug/Kg	1.5	500	330			
DIBENZ[A,H]ANTHRACENE	<500	ug/Kg	1.5	500	330			
BENZO[G,H,I]PERYLENE	<500	ug/Kg	1.5	500	330			
NITROBENZENE-D5	73	%	1.5					
2-FLUOROBIPHENYL	76	%	1.5					
TERPHENYL-D14	85	%	1.5					

Report Notes:



Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2474-7

SDG:

WP2474

Report Date:

7/12/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

83

Method:

EPA 8270

Date Analyzed:

6/30/99

Sample Description	Matrix	Samp	led Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
19SLB06-0506	\$L	SL 5/1 <b>4/9</b> 9		5/15/99	5/26/99	DPD	EPA 3550	KRT
Compound	Re	:suit	Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	<.	430	ug/Kg	1.3	430	330		-
2-METHYLNAPHTHALENE	<4	430	ug/Kg	1,3	430	330		
ACENAPHTHYLENE	<	430	ug/Kg	1,3	430	330		
ACENAPHTHENE	<4	430	ug/Kg	1,3	430	330		
FLUORENE	<	430	ug/Kg	1.3	430	330		
PHENANTHRENE	<4	430	ug/Kg	1.3	430	330		
ANTHRACENE	<	430	ug/Kg	1,3	430	330		
FLUORANTHENE	<4	430	ug/Kg	i <b>1,3</b>	430	330		, :
PYRENE	<.	430	ug/Kg	1.3	430	330	,4	
ENZO(A)ANTHRACENE	<	430	ug/Kg	1.3	430	330	·	
CHRYSENE	<4	430	ug/Kg	1,3	430	330		
BENZO[B]FLUORANTHENE	<4	430	ug/Kg	1,3	430	330		
BENZO[K]FLUORANTHENE	<	430	ug/Kg	1.3	430	330		
BENZO[A]PYRENE	<4	430	ug/Kg	1.3	430	330		
INDENO[1,2,3-CD]PYRENE	<	430	ug/Kg	1,3	430	330		
DIBENZ(A,H)ANTHRACENE	<	430	ug/Kg	1.3	430	330		
BENZO[G,H,I]PERYLENE	<	430	ug/Kg	1,3	430	330		
NITROBENZENE-D5	1	02	%	1.3				
2-FLUOROBIPHENYL	1	03	%	1.3				
TERPHENYL-D14	\$1	138	%	1,3				

report Notes:

\$



Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2474-8

SDG:

WP2474

Report Date: PO No.:

7/12/99 N7912-P99264

Project:

CTO #68

% Solids:

78

Method:

**EPA 8270** 

Date Analyzed: 6/30/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
19SLB08-0405	SL	SL 5/14/99		5/26/99	DPD	EPA 3550	KRT
Compound	Res	ult Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	J33	00 ug/Kg	14	4600	330		
2-METHYLNAPHTHALENE	680	00 ug/Kg	14	4600	330		
ACENAPHTHYLENE	<46	00 ug/Kg	14	4600	330		
ACENAPHTHENE	460	00 ug/Kg	14	4600	330		
FLUORENE	780	00 ug/Kg	14	4600	330		
PHENANTHRENE	160	00 ug/Kg	14	4600	330		
ANTHRACENE	<46	00 ug/Kg	14	4600	330		_
FLUORANTHENE	J31	00 ug/Kg	14	4600	330		•
PYRENE	<46	00 ид/Кд	14	4600	330		
BENZO[A]ANTHRACENE	<46	00 ug/Kg	14	4600	330	••	
CHRYSENE	<46	00 ug/Kg	14	4600	330		
BENZO[B]FLUORANTHENE	<46	00 ug/Kg	14	4600	330	•	
BENZO[K]FLUORANTHENE	<46	00 ug/Kg	14	4600	330		
BENZO[A]PYRENE	<46	00 цд/Кд	14	4600	330		
INDENO[1,2,3-CD]PYRENE	<46	00 ug/Kg	14	4600	330		
DIBENZ[A,H]ANTHRACENE	<46	00 ид/Кд	14	4600	330		
BENZO[G,H,I]PERYLENE	<46	00 ug/Kg	14	4600	330		
NITROBENZENE-D5	82	2 %	14				
2-FLUOROBIPHENYL	79	9 %	14				
TERPHENYL-D14	76	\$ %	14				

Report Notes:

J, O-1



`lient:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

Report Date:

WP2474-12

SDG:

WP2474 7/12/99

PO No.:

N7912-P99264

CTO #68

Project: % Solids:

81

Method:

EPA 8270

Date Analyzed: 6/30/99

Sample Description	Matrix Sa	Matrix Sampled Date		Ext. Date	Ext'd By	Ext. Method	Analyst
19SLB16-0203	SL	5/14/99	5/15/99	5/26/99	DP <b>D</b>	EPA 3550	KRT
Compound	Result	Units	DF	Sample PQL	Method PQL		_
NAPHTHALENE	<460	ид/Кд	1.4	460	330		
2-METHYLNAPHTHALENE	<460	ug/Kg	1.4	460	330		
ACENAPHTHYLENE	<460	ug/Kg	1.4	460	330		
ACENAPHTHENE	<460	ug/Kg	1.4	460	330		
FLUORENE	<460	ug/Kg	1.4	460	330		
PHENANTHRENE	<b>&lt;46</b> 0	ug/Kg	1,4	460	330		
ANTHRACENE	<b>&lt;</b> 460	ug/Kg	1,4	460	330		
FLUORANTHENE	<b>&lt;460</b>	ug/Kg	1.4	460	330		
PYRENE	<460	ug/Kg	1.4	460	330	_	
ENZO[A]ANTHRACENE	<460	ug/Kg	1.4	460	330	**	
CHRYSENE	<460	ug/Kg	1.4	460	330		
BENZO(B)FLUORANTHENE	<460	ug/Kg	1.4	460	330	,	
BENZO[K]FLUORANTHENE	<460	ug/Kg	1.4	460	330		
BENZO[A]PYRENE	<460	ug/Kg	1.4	460	330		
INDENO[1,2,3-CD]PYRENE	<460	ug/Kg	1.4	460	330		
DIBENZ[A,H]ANTHRACENE	<460	ug/Kg	1.4	460	330		
BENZO(G,H,I)PERYLENE	J240	ug/Kg	1.4	460	330		
NITROBENZENE-D5	52	%	1.4				
2-FLUOROBIPHENYL	55	%	1.4				
TERPHENYL-D14	50	%	1.4				

Report Notes:

J,Last 2 I.S. areas are out of criteria due to the matrix



Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number: WP-2474-4

Report Date: 07/13/99 PO No.

: N7912-P99264

Project

: CTO #68

WICH: CNC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 4 of 13

SAMPLE DESCRIPTION		MATRIX			ED BY	SAMPLED D	SAMPLED DATE RECEIVED		
19SLB09-0405D		Solid		CLIEN.	Г	05/14/9	9	05/15/99	
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES	
Solids-Total Residue (TS)	74.	wt &	1.0	0.10	CLP/CIP SO	OW 05/18/99	JF	1	

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect samplespecific reporting limits. Sample-specific limits are indicated by results annotated with '<' values. (1) Sample Preparation on 05/17/99 by JF

07/13/99

LJO/baeajc(dw)/msm



Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number : WP-2474-5
Report Date: 07/13/99

PO No. : N7912-P99264

Project : CTO #68

WIC#: CNC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 5 of 13

SAMPLE DESCRIPTION		MATRIX SAMPI			ED BY	SAMPLED I	SAMPLED DATE REC		
19SLB03-0506		Solid	- "	CLIEN	T	05/14/9	9	05/15/99	
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES	
Solids-Total Residue (TS)	69.	wt 8	1.0	0.10	CLP/CIP	SOW 05/18/99	JF	1	

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

(1) Sample Preparation on 05/17/99 by JF

07/13/99

LJO/baeajc(dw)/msm



Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number : WP-2474-6
Report Date: 07/13/99

PO No. Project : N7912-P99264 : CTO #68

WIC#: CNC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 6 of 13

SAMPLE DESCRIPTION		MATRIX			ED BY	SAMPLED D	SAMPLED DATE RECEIVED		
19SLB09-0405		Solid		CTIEN	Т	05/14/9	9	05/15/99	
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	₿Y	NOTES	
Solids-Total Residue (TS)	73.	wt %	1.0	0.10	CLP/CIP	SOW 05/18/99	JF	` 1	

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

(1) Sample Preparation on 05/17/99 by JF

07/13/99

LJO/baeajc(dw)/msm



Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number: WP-2474-7

Report Date: 07/13/99 PO No. : N7912-P99264

Project : CTO #68

WICH: CNC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 7 of 13

SAMPLE DESCRIPTION		MATRIX		SAMPLE	ED BY	SAMPLED D	ATE	RECEIVED
19SLB06-0506		Solid		CLIEN	Γ	05/14/9	9	05/15/99
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES
Solids-Total Residue (TS)	83.	wt %	1.0	0.10	CLP/CIP SOW	05/18/99	JF	1

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

(1) Sample Preparation on 05/17/99 by JF

07/13/99

LJO/baeajc(dw)/msm



Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number : WP-2474-8 Report Date: 07/13/99

PO No. Project

: CTO #68

: N7912-P99264

WIC#: CNC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 8 of 13

SAMPLE DESCRIPTION		MATRIX		SAMPI	ED BY	SAMPLED I	ATE	RECEIVED
19SLB08-0405		Solid	-	CLIEN	т	05/14/9	9	05/15/99
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES
Solids-Total Residue (TS)	78.	wt %	1.0	0.10	CLP/CIP	SOW 05/18/99	JF	1

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect sample-specific reporting limits. Sample-specific limits are indicated by results annotated with '<' values.

(1) Sample Preparation on 05/17/99 by JF

07/13/99

LJO/baeajc(dw)/msm



Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number : WP-2474-12

Report Date: 07/13/99

PO No. : N7912-P99264

Project : CTO #68

WIC#: ONC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 11 of 13

SAMPLE DESCRIPTION		MATRIX		SAMPLA	D BY	SAM	IPLED I	ETAC	RECEIVED
19SLB16-0203		Solid		CLIEN	T	0	5/14/9	9	05/15/99
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANA	LYZED	BY	NOTES
Solids-Total Residue (TS)	81.	wt %	1.0	0.10	CLP/CIP	SOW 05/	18/99	JF	1

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect samplespecific reporting limits. Sample-specific limits are indicated by results annotated with '<' values. (1) Sample Preparation on 05/17/99 by JF

07/13/99

LJO/baeajc (dw) /msm



Tetra Tech NUS

1401 Oven Park Dr., Suite 102

Tallahassee, FL 32308

Lab Number : WP-2490-18

Report Date: 07/09/99

PO No. : N7912-P99264 Project : CTO #68

WIC#: CNC CHARLESTON

REPORT OF ANALYTICAL RESULTS

Page 14 of 14

SAMPLE DESCRIPTION		MATRIX		SAMP	LED BY	SAMPLED D	ATE	RECEIVED
19SLB16-0203		Solid		CLIE	NT	05/17/9	9	05/18/99
PARAMETER	RESULT	UNITS	DF	*PQL	METHOD	ANALYZED	BY	NOTES
Total Combustible Organics	4.3	wt 8	1.0	0.1	ASTM D2974-8	06/08/99	JF	1

^{*} PQL (Practical Quantitation Level) represents laboratory reporting limits and may not reflect samplespecific reporting limits. Sample-specific limits are indicated by results annotated with '<' values. (1) Sample Preparation on 06/07/99 by JF

:::

07/09/99

LJO/baeajc(dw)/msm PF07TOS1 CC: MS. LEE LECK TETRA TECH NUS FOSTER PALZA 7 661 ANDERSEN DR.



Tint:

Paul Calligan

Tetra Tech NUS

1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2490-19

SDG:

WP2490

Report Date:

6/16/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

N/A

Method:

SW8260

Date Analyzed: 5/26/99

Sample Description	Matrix 3	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
01TL00103 (typ)	AQ	5/3/99	5/18/99	5/26/99	2\$£	5030	ıss
Compound	Resu	it Units	DF	Sample PQL	Method PQL		
BENZENE		ug/L	1.0	5	5	·	
TOLUENE	<5	ug/L	1.0	5	5		
1,2-DIBROMOETHANE	<5	ug/L	1.0	5	5		
ETHYLBENZENE	<5	ug/L	1.0	5	5		
NAPHTHALENE	<5	ug/L	1.0	5	5		
MTBE	<5	ug/L	1.0	5	5		
TOTAL XYLENES	<5	ug/L	1.0	5	5		
DIBROMOFLUOROMETHANE	83	96	1.0				
OICHLOROETHANE-D4	80	%	1.0				
JENE-D8	86	%	1.0				
P-BROMOFLUOROBENZENE	81	%	1.0				

Report Notes:

Client:

Katahdin Analytical

340 County Road

Westbrook, Maine 04092

Contact:

Ms. Andrea Colby

Project Description:

Former Naval Complex

cc: KATA00199

Report Date: June 11, 1999

Page 1 of 1

Sample ID

: 19SLB16-0203

Lab ID Matrix : 9905606-03

Matrix
Date Collected

: Soil : 05/17/99

Date Received

: 05/18/99

Priority

: Routine

Collector

: Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Anal	yst Date	Time	Batch ]	М
General Chemistry	r										
Evaporative Loss	@ 105 C	20.0	00.1	1.00	wt%	1.0	GJ	05/19/99	1540	149550	J
Total Organic Carl	bon	13900	254	590	т∉⁄ке	1.0	LS	05/28/99	1220	150121	2

M = Method	Method-Description	
MI	EPA 3550	
M 2	SW846 9060 Modifled	

#### Notes:

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

J indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

Data reported in mass/mass units is reported as 'dry weight'.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories standard operating procedures. Please direct any questions to your Project Manager, Valerie Davis at (843) 769-7391.

. . . 1

<u>~1</u>

^{*} indicates that a quality control analyte recovery is outside of specified acceptance criteria.



'ent:

Arnold Lamb

Tetra Tech NUS

794 South Military Trail

Deerfield Beach, FL 33442

Proj. ID: CNC CHARLESTON

Lab Number:

WP2300-1

SDG:

WP2300

Report Date:

6/9/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

Method: Date Analyzed: 5/14/99

SW8260

Sample Description	Matrix :	Sampled Date	Rec'd Date	Ext. Date	Ext.a BA	Ext. Method	Analyst
19TL00101	SL	5/3/99	5/5/99	5/14/99	KRT	5030	KRT
Compound	Resu	ik Units	DF	Sample PQL	Method PQL		-
BENZENE	<5	ug/L	1.0	5	5		
TOLUENE	<5	ug/L	1.0	5	5		
1,2-DIBROMOETHANE	<5	ug/L	1.0	5	5		
ETHYLBENZENE	<5	ug/L	1.0	5	5		
NAPHTHALENE	<5	ug/L	1.0	5	5		
MTBE	<5	ug/L	1.0	5	5		
TOTAL XYLENES	<5	ug/L	1.0	5	5		
DIBROMOFLUOROMETHANE	104	- %	1.0				
?-DICHLOROETHANE-D4	109	%	1.0				
JLUENE-D8	97	%	1.0				
P-BROMOFLUOROBENZENE	98	%	1.0				

Report Notes:



Client: Arnold Lamb

Tetra Tech NUS 794 South Military Trail

Deerfield Beach, FL 33442

Proj. ID: CNC CHARLESTON

P-BROMOFLUOROBENZENE

102

Lab Number:

WP2300-2

SDG:

WP2300

Report Date:

6/9/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

82

Method:

82 SW8260

Date Analyzed: 5/13/99

Sample Description	Matrix	Sam	pled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
19SLB11-0405	SL	Ę	5/4/99	5/5/99	5/13/99	KMC	5035	КМС
Compound	R	esult	Units	DF	Sample PQL	Method PQL		
BENZENE		<6	ug/Kg	1.3	6	5		
TOLUENE		<6	ug/Kg	1.3	6	5		
1,2-DIBROMOETHANE		<6	ug/Kg	1.3	6	5		
ETHYLBENZENE		<6	ug/Kg	1.3	6	5		
NAPHTHALENE	E	810	ug/Kg	1.3	6	5		
MTBE		<6	ug/Kg	1.3	6	5		
TOTAL XYLENES		J6	ид/Кд	1.3	6	5		
DIBROMOFLUOROMETHANE		110	%	1.3				
1,2-DICHLOROETHANE-D4		100	%	1.3				
TOLUENE-D8		92	%	1.3				

1.3

Report Notes: J, E



Client:

Arnold Lamb

Tetra Tech NUS 794 South Military Trail

Deerfield Beach, FL 33442

Proj. ID: CNC CHARLESTON

Lab Number:

WP2300-2RA

SDG:

WP2300

Report Date: PO No.:

6/9/99

Project:

N7912-P99264 CTO #68

% Solids:

82

Method:

SW8260

Date Analyzed: 5/15/99

Sample Description 19SLB11-0405	Matrix	Samp	led Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
	SL	5/4/99		5/5/99	5/15/99	JSS	5030	JSS
Compound	Re	sult	Units	DF	Sample PQL	Method PQL		
BENZENE	<	550	ug/L	110	550	5		
TOLUENE	<	550	ug/L	110	550	5		
1,2-DIBROMOETHANE	<	550	ug/L	110	550	5		
ETHYLBENZENE	<	550	ug/L	110	550	5		
NAPHTHALENE	J:	200	ug/L	110	550	5		
MTBE	<	550	ug/L	110	550	5		
TOTAL XYLENES	<	550	ug/L	110	550	5		
DIBROMOFLUOROMETHANE	9	99	%	110				
1.2-DICHLOROETHANE-D4	!	95	%	110				
LUENE-D8	•	98	%	110				
P-BROMOFLUOROBENZENE	!	91	%	110				

_aport Notes:



Client:

Amold Lamb

Tetra Tech NUS 794 South Military Trail

Deerfield Beach, FL 33442

Proj. ID: CNC CHARLESTON

Lab Number:

WP2300-5

SDG:

WP2300

Report Date:

6/9/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

60

Method:

SW8260

Date Analyzed: 5/14/99

Sample Description	Matrix	Samp	led Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
19SLB10-0405 Compound	SL 5/4/99		5/5/99	5/14/99	KRT	5030	KRT	
	R	esult	Units	DF	Sample PQL	Method PQL		
BENZENE	<	850	ug/L	170	850	5		
OLUENE	<	850	ug/L	170	850	5		
,2-DIBROMOETHANE	<	850	ug/L	170	850	5		
THYLBENZENE	<	850	ug/L	170	850	5		
IAPHTHALENE	1	600	ug/L	170	850	5		
ITBE	<	850	ug/L	170	850	5		
OTAL XYLENES	<	850	ug/L	170	850	5		
BROMOFLUOROMETHANE	1	100	%	170				
,2-DICHLOROETHANE-D4	1	107	%	170				
OLUENE-D8		99	%	170				
-BROMOFLUOROBENZENE	1	107	%	170				

Report Notes:



Paul Calligan Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2300-2

SDG:

WP2300

Report Date:

6/30/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

82

Method:

**EPA 8270** 

Date Analyzed:

6/24/99

Sample Description	Matrix Sampled Date		Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
19SLB11-0405	SL 5/4/99		5/5/99	5/18/99	GST	SW3550	sw
Compound	Result	Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	J380	ug/Kg	1.2	400	330		
2-METHYLNAPHTHALENE	930	ug/Kg	1.2	400	330		
ACENAPHTHYLENE	<400	ug/Kg	1.2	400	330		
ACENAPHTHENE	J270	ug/Kg	1.2	400	330		
FLUORENE	J <u>22</u> 0	ug/Kg	1.2	400	330		
PHENANTHRENE	660	ug/Kg	1.2	400	330		
ANTHRACENE	<400	ug/Kg	1.2	400	330		
FLUORANTHENE	<400	ug/Kg	1.2	400	3 <b>3</b> 0		
:NE	560	ug/Kg	1.2	400	330		
b=rZO[A]ANTHRACENE	<400	ug/Kg	1.2	400	330		
CHRYSENE	<400	ug/Kg	1,2	400	330		
BENZO[B]FLUORANTHENE	<400	ug/Kg	1.2	400	330		
BENZO[K]FLUORANTHENE	<400	ug/Kg	1.2	400	330		
BENZO[A]PYRENE	<400	ug/Kg	1.2	400	330		
INDENO[1,2,3-CD]PYRENE	<400	ug/Kg	1.2	400	330		
DIBENZ[A,HJANTHRACENE	<400	ug/Kg	1.2	400	330		
BENZO[G,H,I]PERYLENE	<400	ug/Kg	1.2	400	330		
NITROBENZENE-D5	80	%	1.2				
2-FLUOROBIPHENYL	84	%	1.2				
TERPHENYL-D14	93	%	1.2				

Report Notes: J, 0-13



# KATAHDIN ANALYTICAL SERVICES REPORT OF ANALYTICAL RESULTS

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2300-2RA

SDG:

WP2300

Report Date:

6/30/99

PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

82

Method:

EPA 8270

Date Analyzed: 6/25/99

Sample Description	Matrix	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
19SLB11-0405	SL 5/4/99		5/5/99	5/18/99	GST	SW3550	sw
Compound	Res	ult Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	J26	i0 ug/Kg	1.2	400	330		
2-METHYLNAPHTHÅLENE	72	0 ug/Kg	1.2	400	330		
ACENAPHTHYLENE	<40	00 ug/Kg	1.2	400	330		
ACENAPHTHENE	<40	00 ug/Kg	1.2	400	330		
FLUORENE	<40	i0 ug/Kg	1.2	400	330		
PHENANTHRENE	520	ug/Kg	1.2	400	330		
ANTHRACENE	<40	0 ug/Kg	1.2	400	330		
FLUORANTHENE	<40	0 ug/Kg	1.2	400	330		
PYRENE	J35	0 ug/Kg	1.2	400	330		
BENZO[A]ANTHRACENE	<40	0 ug/Kg	1.2	400	330		
CHRYSENE	<40	0 ug/Kg	1,2	400	330		
BENZO[B]FLUORANTHENE	<40	0 ug/Kg	1,2	400	330		
BENZO[K]FLUORANTHENE	<40	0 ug/Kg	1.2	400	330		
BENZO[A]PYRENE	<40	0 ug/Kg	1.2	400	330		
INDENO[1,2,3-CD]PYRENE	<40	0 ug/Kg	1.2	400	330		
DIBENZ[A,H]ANTHRACENE	<40	0 ug/Kg	1.2	400	330		
BENZO[G,H,I]PERYLENE	<40	0 ug/Kg	1.2	400	330		
NITROBENZENE-D5	67	%	1.2				
2-FLUOROBIPHENYL	75	%	1.2				
TERPHENYL-D14	76	%	1.2				

Report Notes:

J, O-13



# KATAHDIN ANALYTICAL SERVICES REPORT OF ANALYTICAL RESULTS

nt: Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2300-5

SDG:

WP2300

Report Date:

6/30/99

PO No.:

N7912-P99264

Project:

CTO#68

% Solids:

60

Method:

EPA 8270

Date Analyzed: 6/24/99

Sample Description	Matrix S	ampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
19SLB10-0405	\$L	SL 5/4/99		5/18/99	GST	SW3550	sw
Compound	Resul	lt Units	DF	Sample PQL	Method PQL		
NAPHTHALENE	1100	ug/Kg	1.6	530	330		
2-METHYLNAPHTHALENE	3900	ug/Kg	1,6	530	330		
ACENAPHTHYLENE	<530	ug/Kg	1.6	530	330		
ACENAPHTHENE	<530	ug/Kg	1.6	530	330		
FLUORENE	1700	ug/Kg	1.6	530	330		
PHENANTHRENE	1800	ug/Kg	1.6	530	330		
ANTHRACENE	<530	ug/Kg	1.6	530	330		
FLUORANTHENE	J320	ug/Kg	1.6	530	330		
PENE	560	ug/Kg	1.6	530	330		
ZOJAJANTHRACENE	<530	ug/Kg	1.6	530	330		
CHRYSENE	<530	ug/Kg	1.6	530	330		
BENZO[B]FLUORANTHENE	<530	ug/Kg	1.6	530	330		
BENZOKIFLUORANTHENE	<530	ug/Kg	1.6	530	330		
BENZO[A]PYRENE	<530	ug/Kg	1.6	530	330		
INDENO[1,2,3-CD]PYRENE	<530	ug/Kg	1.6	530	330		
DIBENZIA, HJANTHRACENE	<530	ug/Kg	1.6	530	330		
BENZO[G,H,I]PERYLENE	<530	ug/Kg	1.6	530	330		
NITROBENZENE-D5	#124	- %	1.6				
2-FLUOROBIPHENYL	#109	%	1.6				
TERPHENYL-D14	106	%	1.6				

Traport Notes:

J, #, O-13



# KATAHDIN ANALYTICAL SERVICES REPORT OF ANALYTICAL RESULTS

Client:

Paul Calligan

Tetra Tech NUS 1401 Oven Park Dr.

Suite 102

Tallahassee, FL 32308

Proj. ID: CNC CHARLESTON

Lab Number:

WP2300-5RA

SDG:

WP2300 6/30/99

Report Date: PO No.:

N7912-P99264

Project:

CTO #68

% Solids:

Method:

EPA 8270

Date Analyzed: 6/25/99

Sample Description	Matrix S	Sampled Date	Rec'd Date	Ext. Date	Ext'd By	Ext. Method	Analyst
19SLB10-0405	SL	SL 5/4/99		5/18/99	GST	SW3550	sw
Compound	Resu	lt Units	DF	Sample PQL	Method PQL		_
NAPHTHALENE	930	ug/Kg	1.6	530	330		
2-METHYLNAPHTHALENE	2800	ug/Kg	1.6	530	330		
ACENAPHTHYLENE	<530	ug/Kg	1.6	530	330		
ACENAPHTHENE	J390	ug/Kg	1.6	530	330		
FLUORENE	1200	ug/Kg	1.6	530	330		
PHENANTHRENE	1400	ug/Kg	1.6	530	330		
ANTHRACENE	<530	ug/Kg	1.6	530	330		
FLUORANTHENE	<530	ug/Kg	1.6	530	330		
PYRENE	J440	ug/Kg	1.6	530	330		
BENZO[A]ANTHRACENE	<530	ug/Kg	1.6	530	330		
CHRYSENE	<530	ug/Kg	1.6	530	330		
BENZO[B]FLUORANTHENE	<530	ug/Kg	1.6	530	330		
BENZOKIFLUORANTHENE	<530	ug/Kg	1.6	530	330		
BENZO[A]PYRENE	<530	ug/Kg	1.6	530	330		
INDENO[1,2,3-CD]PYRENE	<530	ug/Kg	1.6	530	330		
DIBENZ[A,H]ANTHRACENE	<530	ug/Kg	1.6	530	330		
BENZO[G,H,I]PERYLENE	<530	ug/Kg	1.6	530	330		,
NITROBENZENE-D5	97	%	1.6				
2-FLUOROBIPHENYL	82	%	1.6				
TERPHENYL-D14	69	%	1.6				

Report Notes:

J, O-13

#### INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services

Client Field ID: 19SLB11-0405

Matrix: SOIL

SDG Name:

WP2300

Percent Solids: 81.9

Lab Sample ID: WP2300-002

Concentration Units (ug/L or mg/Kg dry weight): mg/Kg

CAS No.	Analyte	Concentration	C	Q	M	DF
7429-90-5	ALUMINUM	6260			P	1
7440-36-0	ANTIMONY	0.20	υ		P	1
7440-38-2	ARSENIC	19.1			P	1
7440-39-3	BARIUM	11.7			P	1
7440-41-7	BERYLLIUM	0.30	В		P	1
7440-43-9	CADMIUM	0.22	υ		P	1
7440-70-2	CALCIUM	8550			P	1
7440-47-3	CHROMIUM	14.0			P	1
7440-48-4	COBALT	3.4			P	1
7440-50-8	COPPER	3.7			P	1
7439-89-6	IRON	7300			P	1
7439-92-1	LEAD	6.8			P	1
7439-95-4	MAGNESIUM	894			P	1
7439-96-5	MANGANESE	48.1			P	1
7439-97-6	MERCURY	0.01	В		CV	1
7440-02-0	NICKEL	4.0	В		P	1
7440-09-7	POTASSIUM	653			P	1
7782-49-2	SELENIUM	0.29	U		P	1
7440-22-4	SILVER	0.28	U		P	1
7440-23-5	SODIUM	207			P	1
7440-28-0	THALLIUM	0.50	U		P	1
7440-62-2	VANADIUM	15.6			P	1
7440-66-6	ZINC	14.3			P	1

Color Before: BROWN

Texture: MEDIUM

Color After: YELLOW

Clarity After: CLEAR

Comments:

Client:

Katahdin Analytical 340 County Road

Westbrook, Maine 04092

Contact:

Westertook, Marine 0409.

Contact

Ms. Andrea Colby

Project Description:

Former Naval Complex

cc: KATA00199

Report Date: May 27, 1999

Page 1 of 1

Sample ID

: 9905110-03

: 19SLB11-0405

Lab ID Matrix

: Soil

Date Collected

: 05/04/99

Date Received

: 05/04/99

Priority Collector : Routine : Client

Parameter	Qualifier	Result	DL	RL	Units	DF	Analy	yst Date	Time	Batch	M
General Chemistry	y		<del></del>								
Total Rec. Petro. I	Hydrocarbons	1890	1 <b>25</b>	250	mg/kg	1.0	AAT	05/26/99	1000	150070	1
Evaporative Loss	@ 105 C	20.0	1.00	1.00	wt%	1.0	GJ	05/05/99	1625	148401	2

M = Method	Method-Description	
<b>M</b> 1	SW846 9071 A	
M 2	EPA 3550	

#### Notes:

The qualifiers in this report are defined as follows:

ND indicates that the analyte was not detected at a concentration greater than the detection limit.

J indicates presence of analyte at a concentration less than the reporting limit (RL) and greater than the detection limit (DL).

U indicates that the analyte was not detected at a concentration greater than the detection limit.

indicates that a quality control analyte recovery is outside of specified acceptance criteria.

Data reported in mass/mass units is reported as 'dry weight'.

This data report has been prepared and reviewed in accordance with General Engineering Laboratories

standard operating procedures. Please direct

any questions to your Project Manager, Valerie Davis at (843) 769-7391.

Just 9. Cont

Reviewed By

I IANA KUDI KATI KATI KATI KATI KUTU KUTU KATI KATI KATI

# s. W. COLE ENGINEERING, INC.

#### REPORT OF GRADATION ASTM C-117, C-136

Project No.

99008

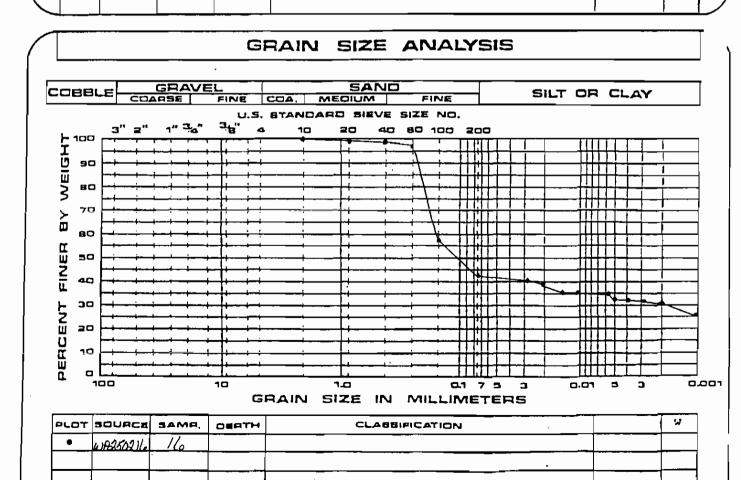
Date

05/20/1999

Project

MISCELLANEOUS

# 200


Client KATAHDIN ANALYTICAL

Sample No. 15, SILTY SAND, WP2490-18

Sieve Size	Percent Passing	PROJECT <u>Specifications</u> %
3/4 "	100.0	
1/2 "	98.7	
1/4 "	97.1	
# 4	96.2	
# 10	94.7	
# 20	91.2	
# 40	85.8	
# 60	73.9	
# 100	32.8	

14.1

#### GRAIN SIZE ANALYSIS COBBLE COARSE SAND GRAVEL SILT OF CLAY FINE COA. MEDIUM U.S. STANDARD SIEVE SIZE NO. 3" 2" 1" ³4" 90 40 60 100 200 4 <del>|-</del> 100 11111 Ü 90 80 70 80 $\Pi\Pi$ FINER 50 40 FUCENT 30 20 10 100 1.0 0.1 7 5 0-01 5 0.001 GRAIN SIZE IN MILLIMETERS PLOT SOURCE SAMP. DEPTH CLASSIFICATION W WP2490-18





# SDG NARRATIVE KATAHDIN ANALYTICAL SERVICES TETRA TECH NUS CASE CNC CHARLESTON

#### Sample Receipt

The following samples were received on May 18, 1999 and were logged in under Katahdin Analytical Services work order number WP2490 for a hardcopy due date of June 17, 1999.

KATAHDIN	TTNUS	GEL
Sample No.	Sample Identification	Sample No.
WP2490-1	16SLB01-0203	<b></b>
WP2490-2	16SLB02-0203	
WP2490-3	16SLB02-0203D	
WP2490-4	16SLB05-0203	
WP2490-5	17SLB01-0708	
WP2490-6	17SLB07-0809	,
WP2490-7	17SLB02-0809	
WP2490-8	17SLB09-0708	
WP2490-9	17SLB04-0304	
WP2490-11	17SLB05-0708D	
WP2490-12	17SLB05-0708	
WP2490-13	17SLB03-0506	9905606-01
WP2490-14	18SLB03-00506D	9905606-02
WP2490-15	17SLB03-0506A	
WP2490-16	17SLB03-0506B	
WP2490-17	18SLB03-0304	
WP2490-18	19SLB16-0203	9905606-03
WP2490-19	01TL00103	

The samples were logged in for the analyses specified on the chain of custody form. All problems encountered and resolved during sample receipt have been documented on the applicable chain of custody forms.

Sample analyses have been performed by the methods as noted herein.

#### Volatile Organic Analysis

One aqueous (trip blank) and thirteen soil/sediment samples were received by the Katahdin Analytical Services, Inc. GC/MS laboratory on May 18, 1999 and were specified to be analyzed by USEPA method 8260B for the analytes benzene, toluene, ethylbenzene, xylenes, MTBE, naphthalene, and EDB.





Analyses for this SDG were performed on instruments 5972-M (low level soil), 5972-Z(low level soil), and 5972-F (aqueous). A VSTD050 (50 ppb standard) was used for the continuing calibration standard. Internal standard and surrogate compounds were also spiked at 50 ug/l.

Batch QC (VBLK, and LCS) was performed in each twelve hour window. Results are included in this data package. The LCS QC samples were spiked with the entire list of compounds quantitated for at 50 ppb. No matrix spike/matrix spike duplicate pair was analyzed on any of the samples in this workorder.

Method 8000B, section 7.5.1.2.1 (Revision 2, 12/96) states, "in those instances where the RSD for one or more analytes exceeds 20%, the initial calibration curve may still be acceptable if the mean of the RSD values for all analytes in the calibration is less than or equal to 20%." Method 8260B narrows this 20% maximum to 15%.

In the calibration curves analyzed in this SDG, several analytes had %RSD values exceeding the allowed 15%. Since the average %RSD for all analytes was 8.4%, 13.4%, and 14.1%, the curves were acceptable.

Initial analyses of samples WP2490-1, WP2490-3, WP2490-5, and WP2490-13 yielded internal standard area and/or surrogate recovery deviations. Reanalyses yielded similar results, confirming matrix interference. Both sets of data for each sample are included in this data package.

Several manual integrations were performed due to split peaks; all have been flagged with a "M" (software-generated) on the pertinent quantitation reports. All "M" flags have been dated and initialed by the analyst performing the integration. In addition, all "M" flags have been reviewed and approved by the GC/MS supervisor. Copies of each manual integration are included in the pertinent quantitation reports.

No other protocol deviations were noted by the volatile organics staff.

#### Semivolatile Organic Analysis

Thirteen soil/sediment samples were received by the Katahdin GC/MS laboratory on May 18, 1999 for analysis in accordance with 8270C for the TCL/PAH list of analytes.

Extraction of all of the soil samples occurred following USEPA method 3550 on May 25, 1999. A laboratory control spike consisting of all TCL analytes spiked into organic free sand, was extracted in the batch along with a site specific MS/MSD pair on sample WP2490-9.

WP2490-9MS and 9MSD showed an elevated recovery for the surrogate terphenyl-d14, and low recovery of the internal standard Perylene-d12. No action was taken in accordance with the method.





Samples WP2490-8, 12, and 13 yielded internal standard area recovery deviations. Reanalysis confirmed the internal standard deviations confirming matrix interference. Both sets of data for this sample are included in the data package.

The initial calibration curves analyzed in this SDG had some of the target analyte %RSD values exceeding 15 %.

Method 8000B, section 7.5.1.2.1 (Revision 2, 12/96) states, "in those instances where the RSD for one or more analytes exceeds 20%, the initial calibration curve may still be acceptable if the mean of the RSD values for all analytes in the calibration is less than or equal to 20%." Section 7.3.7.1 of method 8270C (revision 3, 12/96) narrows this 20% maximum to 15%.

In the calibration curves analyzed for this workorder, the average %RSD for all analytes were as follows:

5970-1 6/22/99 8.2% 5970-1 6/28/99 8.7%

Several manual integrations were performed due to split peaks; all have been flagged with a "M" by the data system. All manual integrations have been dated and initialed by the responsible analyst. Copies of each manual integration are included in the data package. All manual integrations have been reviewed and approved by the GC/MS supervisor.

No other protocol deviations were noted by the semivolatiles organics staff.

#### Wet Chemistry Analysis

For work order WP2490 the analyses for Total Combustible Organics (TCO) have been performed in accordance with the "Annual Book of ASTM Standards", 1987. Analyses for Solids-Total Residue (TS) for work order WP2490 samples have been performed in accordance with "Contract Laboratory Program Statement of Work for Inorganic Analysis".

All analyses were performed within analytical hold time. No protocol deviations were noted by the Wet Chemistry laboratory staff.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Laboratory Manager and/or his designee, as verified by the following signature.

Authorized Signature

0000004

KATAHDIN ANALYTICAL SERVICES SAMPLE RECEIPT CONDITION REF Tel. (207) 874-2400 Fax (207) 775-4029	-				LAB (WORK ORDER) # PAGE:/ COOLER:/	OF 2
CLIENT: Tetratech -SC					COC#SDG# DATE / TIME RECEIVED:_	DS/18/99~1010
PROJECT: CNC Chanle	ston				DELIVERED BY:  RECEIVED BY:  LIMS ENTRY BY:  LIMS REVIEW BY / PM:	BKN San AD C
	YES	NO	EXCEPTIONS	СОММЕ	ENTS	RESOLUTION
1. CUSTODY SEALS PRESENT / INTACT?	ď					<del>- (</del>
2.CHAIN OF CUSTODY PRESENT IN THIS COOLER?	凶					
3. CHAIN OF CUSTODY SIGNED BY CLIENT?						
4. CHAIN OF CUSTODY MATCHES SAMPLES?	<b>a</b>					<u> </u>
5. TEMPERATURE BLANKS PRESENT?	四			ТЕМР В	SLANK TEMP (°C)=_/,/	by fax 5/18/99
6. SAMPLES RECEIVED AT 4°C ±/- 2? ICE /ICE PACKS PRESENT Y or N?		4			R TEMP (°C )= <u>NA</u> RD COOLER TEMP ONLY IF TEMP	BLANK IS NOT PRESENT)
7. VOLATILES FREE OF HEADSPACE?						
8. TRIP BLANK PRESENT IN THIS COOLER	0					
9. PROPER SAMPLE CONTAINERS AND VOLUME?	2					
10. SAMPLES WITHIN HOLD TIME UPON RECEIPT?	1					
11. SAMPLES PROPERLY PRESERVED ⁽¹⁾ ?						<u> </u>
12. CORRECTIVE ACTION REPORT FILED?			N/A			
13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMM	MERCIAL	CLP_HA	ZWRAP NFESC	ACOE AFCEE	OTHER (STATE OF ORIGIN);	
LOG - IN NOTES ⁽¹⁾ :				, <del></del>		
			•			

KATAHDIN ANALYTICAL SERVICES	S. INC.			LAB (WORK ORDER) #	WP 2490
SAMPLE RECEIPT CONDITION REP				· —	
Tel. (207) 874-2400 Fax (207) 775-4029				PAGE:	_of2
1 dx (207) 770-1020				COOLER:	_ OF 2
CLIENT: Tetratech-SC	_			COC#	
CLIENT: 121 POTCOC 3 C				SDG# DATE / TIME RECEIVED:	05/18/99~1010
				DELIVERED BY:	Febex
	1			RECEIVED BY:	BKK
PROJECT: CNC chanles-	to~			LIMS ENTRY BY:	San
				LIMS REVIEW BY / PM:	A)C
	YES	NO	EXCEPTIONS	COMMENTS	RESOLUTION
1. CUSTODY SEALS PRESENT / INTACT?					
2.CHAIN OF CUSTODY PRESENT IN THIS COOLER?				<del></del>	<del></del>
3. CHAIN OF CUSTODY SIGNED BY CLIENT?					
4. CHAIN OF CUSTODY MATCHES SAMPLES?	₫				
5. TEMPERATURE BLANKS PRESENT?				TEMP BLANK TEMP (°C)=	
6. SAMPLES RECEIVED AT 4°C +/- 27 (CE)ICE PACKS PRESENT (V) or N7	9			COOLER TEMP (°C )= NA (RECORD COOLER TEMP ONLY IF TEMP I	BLANK IS NOT PRESENT)
7. VOLATILES FREE OF HEADSPACE?			3		
8. TRIP BLANK PRESENT IN THIS COOLER		<b>a</b>			
9. PROPER SAMPLE CONTAINERS AND VOLUME?				···	
10. SAMPLES WITHIN HOLD TIME UPON RECEIPT?					<del></del>
11. SAMPLES PROPERLY PRESERVED ⁽¹⁾ ?					
12. CORRECTIVE ACTION REPORT FILED?		4	N/A		
13. ANALYTICAL PROGRAMS (CIRCLE ONE) COMM	ERCIAL	CLP HAZ	WRAP NFESC	ACOE AFCEE OTHER (STATE OF ORIGIN):	
LOG - IN NOTES ⁽¹⁾ :					
			•		

2000000

Use this space (and additional sheets if necessary) to document samples that are received broken or compromised, C-O-C discrepancies, radiation checks, residual chlorine check, results of pH check if required. If samples required pH adjustment, record volume and type of preservative added.



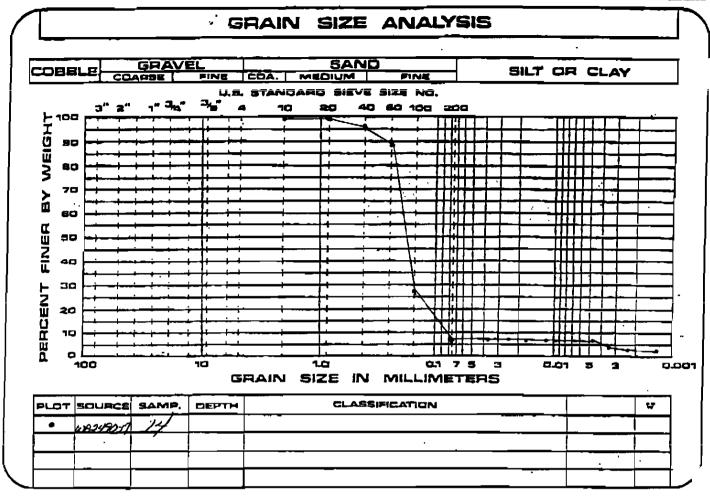
# **CHAIN of CUSTODY**

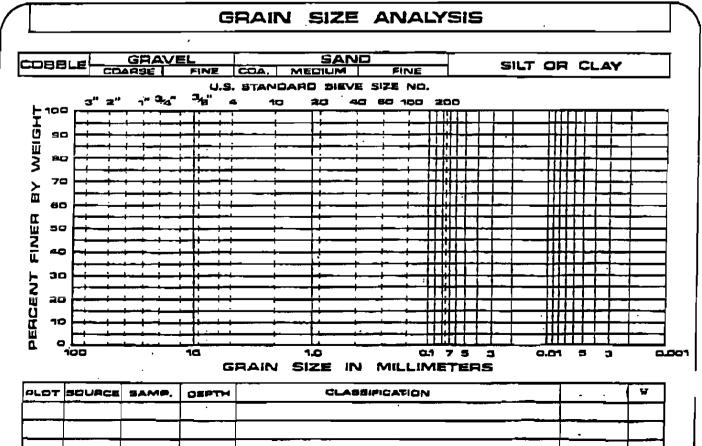
PLEASE PRINT IN PEN Phone # Fax # Client Contact Tetra Tech NUS (423)483-9900 City Zip Code Proj. Name / No. Katahdin Quote # Purchase Order # Bill (if different than above) Address Copies To: Sampler (Print / Sign) ANALYSIS AND CONTAINER TYPE PRESERVATIVES WORK ORDER #: LAB USE ONLY Filt. Filt. Filt. Filt. Filt. Filt. Filt. Filt. Filt. Filt. Filt. Filt. Filt. KATAHDIN PROJECT MANAGER REMARKS: 148+NOOTK 8070C 🗍 FED EX SHIPPING INFO: ☐ UPS ☐ CLIENT 6010B Racors AIRBILL NO: BIEK TEMP°C_ ☐ TEMP BLANK ☐ INTACT ☐ NOT INTACT Date / Time No. of Sample Description Matrix coll'd Cntrs. 5/17/1640 195LB16-0203 COMMENTS Time Jord **f**eceived By: (Signature) Relinquished By: (Signature) Relinquished Ay: (Signature) Date / Time 150298 Received By: (Signature) Relinquished By: (Signature) Relinquished By: (Signature) Date / Time Time Received By: (Signature)

## s. w. cole engineering, inc.

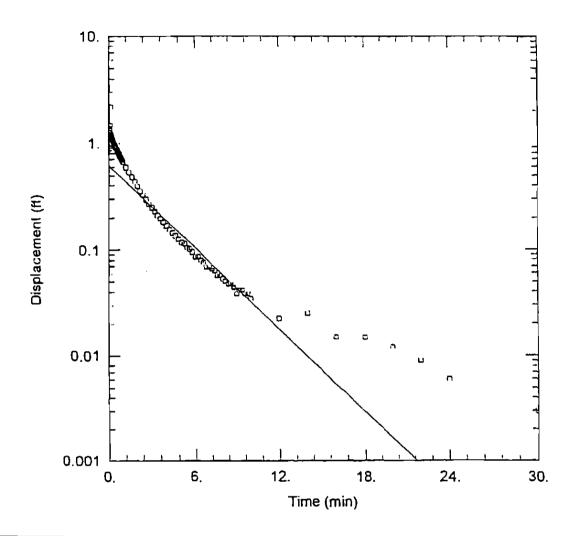
#### REPORT OF GRADATION ASTM C-117, C-136

Project No. 99008 Date 05/20/1999


Project MISCELLANEOUS


Client KATAHDIN ANALYTICAL

Sample No. 14, SILTY SAND, WP2490-17


Sieve	Size	Percent Passing	PROJECT Specifications %
#	4	100.0	
#	10	99.9	
#	20	99.4	
#	40	96.9	
#	60	88.0	
#	100	27.8	
#	200	7.3	

JOB NO: 1245-008





# APPENDIX E **AQUIFER CHARACTERIZATION GRAPHS** CTO 0088



## FDS01C INJECTION

Data Set: C:\TEMP\CHARLE~1\0-01C.AQT

Date: 06/21/99 Time: 12:32:13

#### PROJECT INFORMATION

Company: EnSafe Client: SouthDiv Project: 0144

Test Location: Charleston

Test Well: FDS01C Test Date: 6/2/99

#### AQUIFER DATA

Saturated Thickness: 40. ft Anisotropy Ratio (Kz/Kr): 1.

#### **WELL DATA**

Initial Displacement: 1.28 ft
Casing Radius: 0.0833 ft
Screen Length: 10, ft

Water Column Height: 4.75 ft
Wellbore Radius: 0.333 ft
Gravel Pack Porosity: 0.3

#### SOLUTION

FDS01C Injection

Data Set: C:\TEMP\CHARLE~1\0-01C.AQT

Title: FDS01C Injection

Date: 06/21/99 Time: 14:28:42

#### PROJECT INFORMATION

Company: EnSafe Client: SouthDiv Project: 0144

Location: Charleston Test Date: 6/2/99 Test Well: FDS01C

#### **AQUIFER DATA**

Saturated Thickness: 40. ft Anisotropy Ratio (Kz/Kr): 1.

#### OBSERVATION WELL DATA

Number of observation wells: 1

Observation Well No. 1: FDS01C

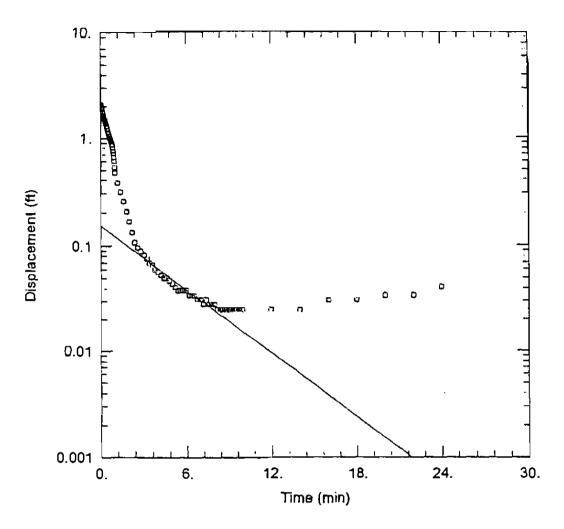
X Location: 0. ft Y Location: 0. ft

No. of observations: 125

Observation Data											
Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	Time (min)	Displacement (ft)						
0.075	1,283	0.5166	0.9	3.6	0.196						
0.0833	1,388	0.5333	0.89	3.8	0.18						
0.0916	1.362	0.55	0.877	4.	0.167						
0.1	1.343	0.5666	0.871	4.2	0.155						
0.1083	1.327	0.5833	0.862	4.4	0.145						
0.1166	0.9	0.6	0.849	4.6	0,136						
0.125	2.19	0.6166	0.842	4.8	0.126						
0.1333	1.477	0.6333	0.833	5.	0.117.						
0,1416	1.229	0.65	0.823	5.2	0.114						
0.15	1.236	0.6666	0.817	5.4	0.104						
0.1583	1.22	0.6833	0.804	5.6	0.101						
0.1666	1.207	0.7	0.798	5.8	0.095						
0.175	1.198	0.7166	0.789	6.	0.085						
<b>0</b> .1 <b>8</b> 33	1.188	0.7333	0.776	6.2	0.085						
<b>0</b> .1916	1.178	0.75	0.773	6.4	0.079						
0.2	1.169	0.7666	0.766	6.6	0.076						
0.2083	1.156	0.7833	0.757	6.8	0.069						
0.2166	1.144	0.8	0.747	7.	0.069						

FDS01C Injection

Ţi	me (min)	Displacement (ft)	Time (min)	Displacement (ft)	Time (min)	Displacement (ft)
-	0.225	1.137	0.8166	0.741	7.2	0.066
	0.2333	1.128	0.8333	0.735	7.4	0.063
	0.2416	1.115	0.85	0.728	7.6	0.057
	0.25	1.109	0.8666	0.719	7.8	0.057
	0.2583	1.099	0.8833	0.716	8.	0.053
	0,2666	1.093	0.9	0.706	8.2	0.05
	0.275	1.087	0.9166	0.7	8.4	0.047
	0.2833	1.077	0.9333	0.69	8.6	0.047
	0.2916	1.071	0.95	0.687	8.8	0.044
	0.3	1.061	0.9666	0.675	9.	0.038
	0.3083	1.055	0.9833	0.671	9.2	0.041
	0.3166	1.049	1.	0.665	9.4	0.041
	0.325	1.039	1.2	0.592	9.6	0.038
	0.3333	1.03	1.4	0.532	9.8	0.038
	0.35	1.017	1.6	0.478	10.	0.034
	0.3666	1.004	1.8	0.434	12.	0.022
	0.3833	0.995	2.	0.396	14.	0.025
	0.4	0.979	2.2	0.358	16.	0.015
	0.4166	0.969	2.4	0.326	18.	0.015
	0.4333	0.953	2.6	0.297	20.	0.012
	0.45	0.944	2.8	0.272	22.	0.009
	0.4666	0.934	3.	0.25	24.	0.006
	0.4833	0.922	3.2	0.231	30.	0.003
	0.5	0.912	3.4	0.212		


# SOLUTION

Aquifer Model: Unconfined Solution Method: Hvorslev

# VISUAL ESTIMATION RESULTS

# **Estimated Parameters**

Parameter	Estimate	
K	0.001029	ft/min
v0	0.2415	ft



# FDS01C - WITHDRAWAL Data Set: C:\TEMP\CHARLE~1\0-11C.AQT Date: 06/21/99 Time: 12:34:56 PROJECT INFORMATION Company: EnSafe Client: SouthDiv Project: 0144 Test Location: Charleston Test Well: FDS01c Test Date: 6/2/99 AQUIFER DATA Saturated Thickness: 40. ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA Initial Displacement: 2.086 ft Water Column Height: 4.75 ft Casing Radius: 0.0833 ft Wellbore Radius: 0.333 ft Screen Length: 10. ft Gravel Pack Porosity: 0.3

# Aquifer Model: Unconfined K = 0.001499 ft/min

FDS01C - Withdrawal

ata Set: C:\TEMP\CHARLE-1\0-11C.AQT

Title: FDS01C - Withdrawal

Date: 06/21/99 Time: 14:34:19

#### PROJECT INFORMATION

Company: EnSafe Client: SouthDiv Project: 0144

Location: Charleston Test Date: 6/2/99 Test Well: FDS01c

#### AQUIFER DATA

Saturated Thickness: 40. ft Anisotropy Ratio (Kz/Kr): 1.

#### OBSERVATION WELL DATA

Number of observation wells: 1

# bservation Well No. 1: FDS01D

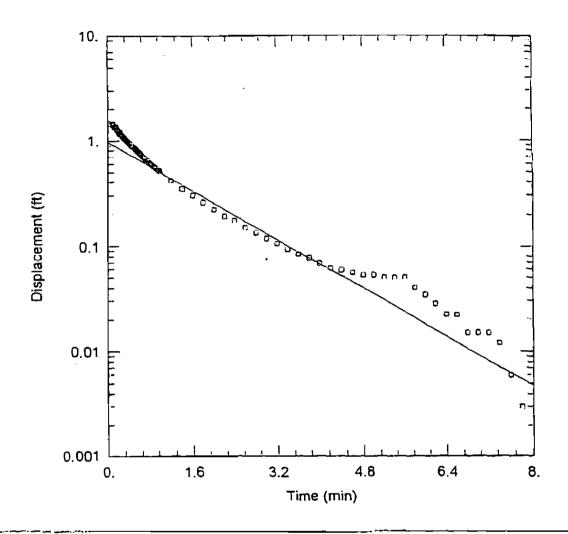
X Location: 0, ft Y Location: 0, ft

No. of observations: 130

		Observ	ation Data		·
Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	Time (min)	Displacement (ft)
0.025	2.077	0.45	1.244	3.2	0.076
0.0333	2.049	0.4666	1.222	3.4	0.069
0.0416	2.017	0.4833	1.2	3.6	0.066
0.05	1.989	0.5	1.178	3.8	0.06
0.0583	1.966	0.5166	1,156	4.	0.057
9990.0	1.941	0.5333	1.134	4.2	0.053
0.075	1.919	0.55	1.115	4.4	0.05
0.0833	1.897	0.5666	1,096	4.6	0.05
0.0916	1.875	0.5833	1.073	4.8	0.047
0.1	1.856	9.0	1.058	5.	0.044
0.1083	1.833	0.6166	1.039	5.2	0.041
0.1166	1.814	0.6333	1.02	5.4	0.038
0.125	1.795	0.65	1.004	5.6	0.038
<b>0</b> .1333	1.776	0.6666	0.985	5.8	0.038
0.1416	1.757	0.6833	0.969	6.	0.038
0.15	1.738	0.7	0.953	6,2	0.034
0.1583	1.723	0.7166	0.937	6.4	0.034
0.1666	1.704	0.7333	0.918	6.6	0.034

FDS01C - Withdrawal

0.175         1.688         0.75         0.906         6.8         0.031           0.1833         1.672         0.7666         0.89         7.         0.031           0.1916         1.656         0.7833         0.874         7.2         0.028           0.2         1.643         0.8         0.852         7.4         0.031           0.2083         1.628         0.8166         0.83         7.6         0.028           0.2166         1.612         0.8333         0.807         7.8         0.028           0.225         1.599         0.85         0.785         8.         0.028           0.2333         1.583         0.8666         0.763         8.2         0.025           0.2416         1.567         0.8833         0.738         8.4         0.025           0.25         1.555         0.9         0.715         8.6         0.025           0.2583         1.542         0.9166         0.69         8.8         0.025           0.2666         1.529         0.9333         0.655         9.         0.025           0.2833         1.501         0.9666         0.529         9.4         0.025           0.281	Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	
0.1916         1.656         0.7833         0.874         7.2         0.028           0.2         1.643         0.8         0.852         7.4         0.031           0.2083         1.628         0.8166         0.83         7.6         0.028           0.2166         1.612         0.8333         0.807         7.8         0.028           0.225         1.599         0.85         0.785         8.         0.028           0.2333         1.583         0.8666         0.763         8.2         0.025           0.2416         1.567         0.8833         0.738         8.4         0.025           0.25         1.555         0.9         0.715         8.6         0.025           0.2583         1.542         0.9166         0.69         8.8         0.025           0.2666         1.529         0.9333         0.655         9.         0.025           0.275         1.514         0.95         0.598         9.2         0.025           0.2833         1.501         0.9666         0.529         9.4         0.025           0.2916         1.485         0.9833         0.475         9.6         0.025           0.3	0.175	1.688	0.75	0.906		0.031	
0.2         1,643         0.8         0.852         7.4         0.031           0.2083         1,628         0.8166         0.83         7.6         0.028           0.2166         1,612         0.8333         0.807         7.8         0.028           0.225         1,599         0.85         0.785         8.         0.028           0.2333         1,583         0.8666         0.763         8.2         0.025           0.2416         1,567         0.8833         0.738         8.4         0.025           0.25         1,555         0.9         0.715         8.6         0.025           0.2583         1,542         0.9166         0.69         8.8         0.025           0.2666         1,529         0.9333         0.655         9.         0.025           0.275         1,514         0.95         0.598         9.2         0.025           0.2833         1,501         0.9666         0.529         9.4         0.025           0.2916         1,485         0.9833         0.475         9.6         0.025           0.3         1,472         1         0.465         9.8         0.025           0.3063	0,1833	1.672	0.7666	0.89	7.	0.031	
0.2083       1.628       0.8166       0.83       7.6       0.028         0.2166       1.612       0.8333       0.807       7.8       0.028         0.225       1.599       0.85       0.785       8.       0.028         0.2333       1.583       0.8666       0.763       8.2       0.025         0.2416       1.567       0.8833       0.738       8.4       0.025         0.25       1.555       0.9       0.715       8.6       0.025         0.2583       1.542       0.9166       0.69       8.8       0.025         0.2666       1.529       0.9333       0.655       9.       0.025         0.275       1.514       0.95       0.598       9.2       0.025         0.2833       1.501       0.9666       0.529       9.4       0.025         0.2813       1.501       0.9666       0.529       9.4       0.025         0.2916       1.485       0.9833       0.475       9.6       0.025         0.3083       1.46       1.2       0.377       10.       0.025         0.3166       1.444       1.4       0.31       12.       0.025         0.3333 </td <td>0.1916</td> <td>1,656</td> <td>0.7833</td> <td>0.874</td> <td>7.2</td> <td>0.028</td> <td></td>	0.1916	1,656	0.7833	0.874	7.2	0.028	
0.2166       1.612       0.8333       0.807       7.8       0.028         0.225       1.599       0.85       0.785       8.       0.028         0.2333       1.583       0.8666       0.763       8.2       0.025         0.2416       1.567       0.8833       0.738       8.4       0.025         0.25       1.555       0.9       0.715       8.6       0.025         0.2583       1.542       0.9166       0.69       8.8       0.025         0.2666       1.529       0.9333       0.655       9.       0.025         0.275       1.514       0.95       0.598       9.2       0.025         0.2833       1.501       0.9666       0.529       9.4       0.025         0.2813       1.501       0.9666       0.529       9.4       0.025         0.2916       1.485       0.9833       0.475       9.6       0.025         0.3083       1.46       1.2       0.377       10.       0.025         0.3166       1.444       1.4       0.31       12.       0.025         0.325       1.431       1.6       0.253       14.       0.025         0.3333	0.2	1,643	0.8	0.852	7.4	0.031	
0.225       1.599       0.85       0.785       8.       0.028         0.2333       1.583       0.8666       0.763       8.2       0.025         0.2416       1.567       0.8833       0.738       8.4       0.025         0.25       1.555       0.9       0.715       8.6       0.025         0.2583       1.542       0.9166       0.69       8.8       0.025         0.2666       1.529       0.9333       0.655       9.       0.025         0.275       1.514       0.95       0.598       9.2       0.025         0.2833       1.501       0.9666       0.529       9.4       0.025         0.2916       1.485       0.9833       0.475       9.6       0.025         0.3       1.472       1.       0.465       9.8       0.025         0.3083       1.46       1.2       0.377       10.       0.025         0.3166       1.444       1.4       0.31       12.       0.025         0.3333       1.419       1.8       0.205       16.       0.031         0.35       1.39       2.       0.167       18.       0.031         0.3666       1.	0.2083	1.628	0.8166	0.83	7.6	0.028	
0.2333       1.583       0.8666       0.763       8.2       0.025         0.2416       1.567       0.8833       0.738       8.4       0.025         0.25       1.555       0.9       0.715       8.6       0.025         0.2583       1.542       0.9166       0.69       8.8       0.025         0.2666       1.529       0.9333       0.655       9.       0.025         0.275       1.514       0.95       0.598       9.2       0.025         0.2833       1.501       0.9666       0.529       9.4       0.025         0.2916       1.485       0.9833       0.475       9.6       0.025         0.3       1.472       1.       0.465       9.8       0.025         0.3083       1.46       1.2       0.377       10.       0.025         0.3166       1.444       1.4       0.31       12.       0.025         0.3333       1.419       1.8       0.205       16.       0.031         0.35       1.39       2.       0.167       18.       0.031         0.3666       1.365       2.2       0.133       20.       0.034         0.4       1.31	0.2166	1.612	0.8333	0.807	7.8	0.028	
0.2416       1.567       0.8833       0.738       8.4       0.025         0.25       1.555       0.9       0.715       8.6       0.025         0.2583       1.542       0.9166       0.69       8.8       0.025         0.2666       1.529       0.9333       0.655       9.       0.025         0.275       1.514       0.95       0.598       9.2       0.025         0.2833       1.501       0.9666       0.529       9.4       0.025         0.2916       1.485       0.9833       0.475       9.6       0.025         0.3       1.472       1.       0.465       9.8       0.025         0.3083       1.46       1.2       0.377       10.       0.025         0.3166       1.444       1.4       0.31       12.       0.025         0.325       1.431       1.6       0.253       14.       0.025         0.3333       1.419       1.8       0.205       16.       0.031         0.35       1.39       2.       0.167       18.       0.031         0.3833       1.339       2.4       0.107       22.       0.034         0.4       1.314 <td>0.225</td> <td>1.599</td> <td>0.85</td> <td>0.785</td> <td>8.</td> <td>0.028</td> <td></td>	0.225	1.599	0.85	0.785	8.	0.028	
0.25         1.555         0.9         0.715         8.6         0.025           0.2583         1.542         0.9166         0.69         8.8         0.025           0.2666         1.529         0.9333         0.655         9.         0.025           0.275         1.514         0.95         0.598         9.2         0.025           0.2833         1.501         0.9666         0.529         9.4         0.025           0.2916         1.485         0.9833         0.475         9.6         0.025           0.3         1.472         1.         0.465         9.8         0.025           0.3083         1.46         1.2         0.377         10.         0.025           0.3166         1.444         1.4         0.31         12.         0.025           0.325         1.431         1.6         0.253         14.         0.025           0.3333         1.419         1.8         0.205         16.         0.031           0.35         1.39         2.         0.167         18.         0.031           0.3833         1.339         2.4         0.107         22.         0.034           0.4         1.3	0.2333	1.583	0.8666	0.763	8.2	0.025	
0.2583       1.542       0.9166       0.69       8.8       0.025         0.2666       1.529       0.9333       0.655       9.       0.025         0.275       1.514       0.95       0.598       9.2       0.025         0.2833       1.501       0.9666       0.529       9.4       0.025         0.2916       1.485       0.9833       0.475       9.6       0.025         0.3       1.472       1.       0.465       9.8       0.025         0.3083       1.46       1.2       0.377       10.       0.025         0.3166       1.444       1.4       0.31       12.       0.025         0.325       1.431       1.6       0.253       14.       0.025         0.3333       1.419       1.8       0.205       16.       0.031         0.35       1.39       2.       0.167       18.       0.031         0.3666       1.365       2.2       0.133       20.       0.034         0.3833       1.339       2.4       0.107       22.       0.034         0.4       1.314       2.6       0.095       24.       0.041         0.4166       1.292 <td>0.2416</td> <td>1.567</td> <td>0.8833</td> <td>0.738</td> <td>8.4</td> <td>0.025</td> <td></td>	0.2416	1.567	0.8833	0.738	8.4	0.025	
0.2666       1.529       0.9333       0.655       9.       0.025         0.275       1.514       0.95       0.598       9.2       0.025         0.2833       1.501       0.9666       0.529       9.4       0.025         0.2916       1.485       0.9833       0.475       9.6       0.025         0.3       1.472       1.       0.465       9.8       0.025         0.3083       1.46       1.2       0.377       10.       0.025         0.3166       1.444       1.4       0.31       12.       0.025         0.325       1.431       1.6       0.253       14.       0.025         0.3333       1.419       1.8       0.205       16.       0.031         0.35       1.39       2.       0.167       18.       0.031         0.3666       1.365       2.2       0.133       20.       0.034         0.3833       1.339       2.4       0.107       22.       0.034         0.4       1.314       2.6       0.095       24.       0.041         0.4166       1.292       2.8       0.088	0.25	1.555	0.9	0.715	8.6	0.025	
0.275         1.514         0.95         0.598         9.2         0.025           0.2833         1.501         0.9666         0.529         9.4         0.025           0.2916         1.485         0.9833         0.475         9.6         0.025           0.3         1.472         1.         0.465         9.8         0.025           0.3083         1.46         1.2         0.377         10.         0.025           0.3166         1.444         1.4         0.31         12.         0.025           0.325         1.431         1.6         0.253         14.         0.025           0.3333         1.419         1.8         0.205         16.         0.031           0.35         1.39         2.         0.167         18.         0.031           0.3666         1.365         2.2         0.133         20.         0.034           0.3833         1.339         2.4         0.107         22.         0.034           0.4         1.314         2.6         0.095         24.         0.041           0.4166         1.292         2.8         0.088	0.2583	1.542	0.9166	0.69	8.8	0.025	
0.2833       1.501       0.9666       0.529       9.4       0.025         0.2916       1.485       0.9833       0.475       9.6       0.025         0.3       1.472       1.       0.465       9.8       0.025         0.3083       1.46       1.2       0.377       10.       0.025         0.3166       1.444       1.4       0.31       12.       0.025         0.325       1.431       1.6       0.253       14.       0.025         0.3333       1.419       1.8       0.205       16.       0.031         0.35       1.39       2.       0.167       18.       0.031         0.3666       1.365       2.2       0.133       20.       0.034         0.3833       1.339       2.4       0.107       22.       0.034         0.4       1.314       2.6       0.095       24.       0.041         0.4166       1.292       2.8       0.088	0.2666	1.529	0.9333	0.655	9.	0.025	
0.2916       1.485       0.9833       0.475       9.6       0.025         0.3       1.472       1.       0.465       9.8       0.025         0.3083       1.46       1.2       0.377       10.       0.025         0.3166       1.444       1.4       0.31       12.       0.025         0.325       1.431       1.6       0.253       14.       0.025         0.3333       1.419       1.8       0.205       16.       0.031         0.35       1.39       2.       0.167       18.       0.031         0.3666       1.365       2.2       0.133       20.       0.034         0.3833       1.339       2.4       0.107       22.       0.034         0.4       1.314       2.6       0.095       24.       0.041         0.4166       1.292       2.8       0.088	0.275	1.514	0.95	0.598	9.2	0.025	
0.3       1.472       1.       0.465       9.8       0.025         0.3083       1.46       1.2       0.377       10.       0.025         0.3166       1.444       1.4       0.31       12.       0.025         0.325       1.431       1.6       0.253       14.       0.025         0.3333       1.419       1.8       0.205       16.       0.031         0.35       1.39       2.       0.167       18.       0.031         0.3666       1.365       2.2       0.133       20.       0.034         0.3833       1.339       2.4       0.107       22.       0.034         0.4       1.314       2.6       0.095       24.       0.041         0.4166       1.292       2.8       0.088	0.2833	1.501	0.9666	0.529	9.4	0.025	
0.3083       1.46       1.2       0.377       10.       0.025         0.3166       1.444       1.4       0.31       12.       0.025         0.325       1.431       1.6       0.253       14.       0.025         0.3333       1.419       1.8       0.205       16.       0.031         0.35       1.39       2.       0.167       18.       0.031         0.3666       1.365       2.2       0.133       20.       0.034         0.3833       1.339       2.4       0.107       22.       0.034         0.4       1.314       2.6       0.095       24.       0.041         0.4166       1.292       2.8       0.088	0.2916	1.485	0.9833	0.475	9.6	0.025	
0.3166       1.444       1.4       0.31       12.       0.025         0.325       1.431       1.6       0.253       14.       0.025         0.3333       1.419       1.8       0.205       16.       0.031         0.35       1.39       2.       0.167       18.       0.031         0.3666       1.365       2.2       0.133       20.       0.034         0.3833       1.339       2.4       0.107       22.       0.034         0.4       1.314       2.6       0.095       24.       0.041         0.4166       1.292       2.8       0.088	0.3	1.472	1.	0.465	9.8	0.025	
0.325     1.431     1.6     0.253     14.     0.025       0.3333     1.419     1.8     0.205     16.     0.031       0.35     1.39     2.     0.167     18.     0.031       0.3666     1.365     2.2     0.133     20.     0.034       0.3833     1.339     2.4     0.107     22.     0.034       0.4     1.314     2.6     0.095     24.     0.041       0.4166     1.292     2.8     0.088	0.3083	1.46	1.2	0.377	10.	0.025	
0.3333     1.419     1.8     0.205     16.     0.031       0.35     1.39     2.     0.167     18.     0.031       0.3666     1.365     2.2     0.133     20.     0.034       0.3833     1.339     2.4     0.107     22.     0.034       0.4     1.314     2.6     0.095     24.     0.041       0.4166     1.292     2.8     0.088	0.3166	1.444	1.4	0.31	12.	0.025	
0.35     1.39     2.     0.167     18.     0.031       0.3666     1.365     2.2     0.133     20.     0.034       0.3833     1.339     2.4     0.107     22.     0.034       0.4     1.314     2.6     0.095     24.     0.041       0.4166     1.292     2.8     0.088	0.325	1.431	1,6	0.253	14.	0.025	
0.3666       1.365       2.2       0.133       20.       0.034         0.3833       1.339       2.4       0.107       22.       0.034         0.4       1.314       2.6       0.095       24.       0.041         0.4166       1.292       2.8       0.088	0.3333	1.419	1.8	0.205	16.	0.031	
0,3833       1.339       2.4       0.107       22.       0.034         0,4       1.314       2.6       0.095       24.       0.041         0.4166       1.292       2.8       0.088	0.35	1.39	2.	0.167	18.		
0.4 1.314 2.6 0.095 24. 0.041 0.4166 1.292 2.8 0.088	0.3666	1.365	2.2	0.133		0.034	
0.4166 1.292 2.8 0.088							
		1.314	2.6		24.	0.041	
0.4333 1.27 3. 0.082	0.4166	1.292		0.088			
	0.4333	1.27	3.	0.082			


# SOLUTION

Aquifer Model: Unconfined Solution Method: Hvorslev

# VISUAL ESTIMATION RESULTS

## **Estimated Parameters**

Parameter	Estimate	
K	0.001499	ft/min
v0	0.1538	ft



# FDS01D INJECTION Data Set: C:\TEMP\CHARLE~1\0-01D.AQT Date: 06/21/99 Time: 12:36:01 PROJECT INFORMATION Company: EnSafe Client: SouthDiv Project 0144 Test Location: Charleston Test Well: FDS01D Test Date: 6/2/99 **AQUIFER DATA** Saturated Thickness: 41, ft Anisotropy Ratio (Kz/Kr): 1. **WELL DATA** Initial Displacement: 1.472 ft Water Column Height: 4.65 ft Casing Radius: 0.0833 ft Wellbore Radius: 0.333 ft Screen Length: 10. ft Gravel Pack Porosity: 0.3 SOLUTION Aquifer Model: Unconfined K = 0.002256 fVmin

FDS01D Injection

Data Set: C:\TEMP\CHARLE~1\0-01D.AQT

Title: FDS01D Injection

Date: 06/21/99 Time: 14:29:05

#### **PROJECT INFORMATION**

Company: EnSafe Client: SouthDiv Project: 0144

Location: Charleston Test Date: 6/2/99 Test Well: FDS01D

#### **AQUIFER DATA**

Saturated Thickness: 41. ft Anisotropy Ratio (Kz/Kr): 1.

#### **OBSERVATION WELL DATA**

Number of observation wells: 1

Observation Well No. 1: FDS01D

X Location: 0. ft Y Location: 0. ft

No. of observations: 106

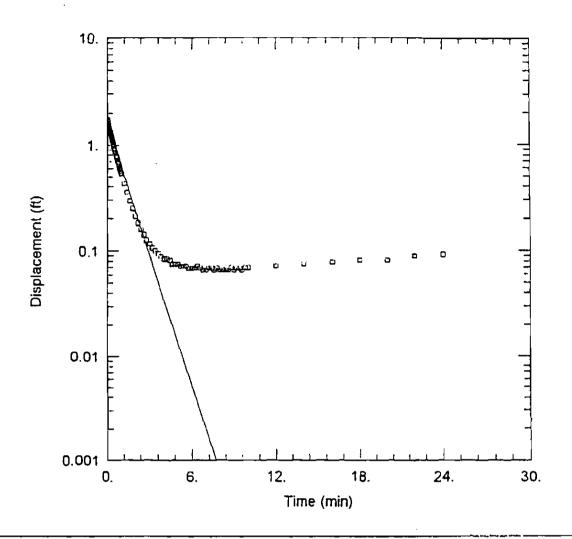
Ç	DS	en	vai	lior	۱L	ata

Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	Time (min)	Displacement (ft)
0.075	1.438	0.4166	0.934	1.2	0.418
0.0833	1.431	0.4333	0.915	1.4	0.352
0.0916	1.416	0.45	0.896	1.6	0.302
0.1	1.447	0.4666	0.877	1.8	0.261
0.1083	1.384	0.4833	0.868	2.	0.223
0.1166	1.334	0.5	0.849	2.2	0.195
0.125	1.362	0.5166	0.836	2.4	0.176
0.1333	1.334	0.5333	0.818	2.6	0.151
0.1416	1.343	0.55	0.802	2.8	0.135
0.15	1.368	D.5666	0.786	3.	0.119
0.1583	1.293	0.5833	0.777	3.2	0.106
0.1666	1.29	0.6	0.761	3.4	0.094
0.175	1.265	0.6166	0.745	3.6	0.084
0.1833	1.252	0.6333	0.733	3.8	0.078
0.1916	1.242	0.65	0.717	4.	0.069
0.2	1.227	0.6666	0.704	4.2	0.062
0.2083	1.217	0.6833	0.692	4.4	0.059
0.2166	1.167	0.7	0.679	4.6	0.056

FDS01D Injection

Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	Time (min)	Displacement (ft)
0.225	1,227	0.7166	0.667	4.8	0.053
0.2333	1,17	0.7333	0.651	5.	0.053
0.2416	1.157	0.75	0.645	5.2	0.05
0.25	1.145	0.7666	0.629	5.4	0.05
0,2583	1,132	0.7833	0.622	5.6	0.05
0.2666	1,12	8.0	0.613	5.8	0.04
0.275	1.11	0.8166	0.604	6.	0.034
0.2833	1.101	0.8333	0.594	6.2	0.028
0.2916	1.085	0.85	0.585	6.4	0.022
0.3	1.076	0.8666	0.575	6.6	0.022
0.3083	1.066	0.8833	0.566	6.8	0.015
0.3166	1.054	0.9	0.556	7.	0.015
0.325	1.041	0.9166	0.547	7.2	0.015
0.3333	1.032	0.9333	0.541	7.4	0.012
0.35	1.013	0.95	0.528	7.6	0.006
0.3666	0.991	0.9666	0.522	7.8	0.003
0.3833	0.972	0.9833	0.512		
0.4	0.953	1.	0.503		

# SOLUTION


Aquifer Model: Unconfined Solution Method: Bouwer-Rice

# VISUAL ESTIMATION RESULTS

# Estimated Parameters

Parameter	Estimate	
	0.002256	ft/min
VΩ	0.9666	ft

2



## FDS01D - WITHDRAWAL

Data Set: C:\TEMP\CHARLE~1\0-11D.AQT

Date: 06/17/99 Time: 14:14:46

#### PROJECT INFORMATION

Company: EnSafe Client SouthDiv

Project: 0144

Test Location: Charleston

Test Well: FDS01D Test Date: 6/2/99

#### AQUIFER DATA

Saturated Thickness: 41. ft Anisotropy Ratio (Kz/Kr): 1.

#### WELL DATA

Initial Displacement: 1.708 ft Casing Radius: 0.0833 ft Screen Length: 10, ft

Water Column Height: 4.65 ft Wellbore Radius: 0.333 ft Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined K = 0.003255 ft/min

FDS01D - Withdrawal

'a Set: C:\TEMP\CHARLE~1\0-11D.AQT

.ब्सe: FDS01D - Withdrawal

Date: 06/21/99 Time: 14:35:40

#### PROJECT INFORMATION

Company: EnSafe Client: SouthDiv Project: 0144

Location: Charleston Test Date: 6/2/99 Test Well: FDS01D

#### **AQUIFER DATA**

Saturated Thickness: 41. ft Anisotropy Ratio (Kz/Kr): 1.

#### **OBSERVATION WELL DATA**

Number of observation wells: 1

Observation Well No. 1: FDS01D

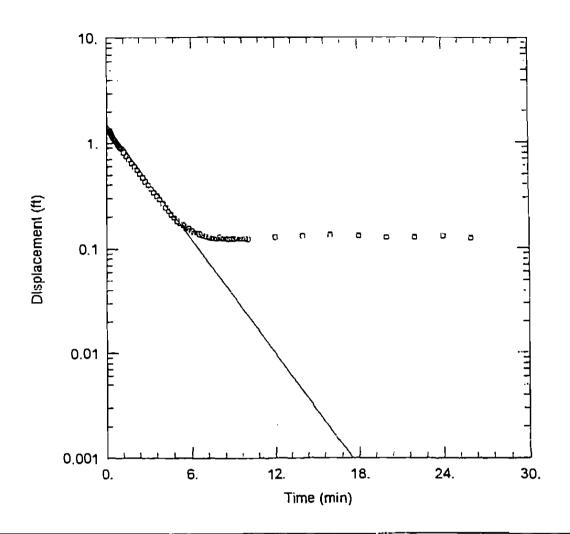
X Location: 0, ft Y Location: 0, ft

No. of observations: 130

Observation Data							
Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	Time (min)	Displacement (ft)		
0.025	1.739	0.45	0.984	3.2	0.106		
0.0333	1.688	0.4666	0.956	3.4	0.1		
0.0416	1. <del>6</del> 66	0.4833	0.934	3.6	0.094		
0.05	1.638	0.5	0.921	3.8	0.088		
0.0583	1.616	0.5166	0.902	4.	0.084		
0.0666	1.594	0.5333	0.886	4.2	0.084		
0.075	1.575	0.55	0.868	4.4	0.081		
0.0833	1.559	0.5666	0.852	4.6	0.075		
0.0916	1.537	0.5833	0.836	4.8	0.075		
0.1	1.519	0,6	0.82	5,	0.075		
0.1083	1.5	0.6166	0.805	5.2	0.072		
D ₋ 1166	1.484	0.6333	0.789	5.4	0.072		
0.125	1.465	0.65	0.773	5.6	0.072		
0.1333	1.449	0.6666	0.761	5.8	0.069		
0.1416	1.43	0.6833	0.748	6.	0.069		
0.15	1.415	0.7	0.732	6.2	0.069		
0.1583	1.399	0.7166	0.72	6.4	0.072		
0.1666	1.386	0.7333	0.707	6.6	0.069		

FDS01D - Withdrawal

Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	
0.175	1.368	0.75	0.695	6.8	0.066	
0.1833	1.355	0.7666	0.682	7.	0.066	
0.1916	1.342	0.7833	0.669	7.2	0.069	
0.2	1.324	0.8	0.657	7.4	0.069	
0.2083	1.311	0.8166	0.644	7.6	0.066	
0.2166	1.295	0.8333	0.635	7.8	0.069	
0.225	1.286	0.85	0.622	8.	0.066	
0.2333	1.273	0.8666	0.61	8.2	0.066	
0.2416	1.254	0.8833	0.6	8.4	0.066	
0.25	1.245	0,9	0.591	8.6	0.066	
0.2583	1.232	0.9166	0.578	8.8	0.069	
0.2666	1.22	0.9333	0.569	9.	0.066	
0.275	1.21	0.95	0.559	9.2	0.069	
0.2833	1.198	0.9666	0.55	9.4	0.069	
0.2916	1.188	0.9833	0.541	9.6	0.066	
0.3	1.176	1.	0.531	9.8	0.069	
0,3083	1.163	1.2	0.43	10.	0.069	
0.3166	1.151	1.4	0.352	12.	0.072	
0.325	1.138	1.6	0.292	14.	0.075	
0.3333	1.129	1.8	0.248	16.	0.078	
0.35	1.107	2.	0.21	18.	0.081	
0.3666	1.085	2.2	0.182	20.	0.081	
0.3833	1.063	2.4	0.16	22.	880.0	
0.4	1.047	2.6	0,141	24.	0.091	
0.4166	1.022	2.8	0.125			
0.4333	1.003	3.	0.116			
			<del></del>			


## SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

# VISUAL ESTIMATION RESULTS

# **Estimated Parameters**

Parameter	Estimate	
K	0.003255	ft/min
y0	1.617	ft



# FDS01A INJECTION Data Set: C:\TEMP\CHARLE~1\1-01A.AQT Date: 06/21/99 Time: 09:11:27 PROJECT INFORMATION Company: EnSafe Client: SouthDiv Project: 0144 Test Location: Charleston Test Well: FDS01A Test Date: 6/3/99 AQUIFER DATA Saturated Thickness: 41, ft Anisotropy Ratio (Kz/Kr): 1. WELL DATA Initial Displacement: 1.325 ft Water Column Height: 4.64 ft Casing Radius: 0.0833 ft Wellbore Radius: 0.333 ft Screen Length: 10. ft Gravel Pack Porosity: 0.3 SOLUTION Aquifer Model: Unconfined K = 0.002708 ft/min

FDS01A Injection

Data Set: C:\TEMP\CHARLE~1\1-01A.AQT

Title: FDS01A Injection

Date: 06/21/99 Time: 14:36:48

#### PROJECT INFORMATION

Company: EnSafe Client: SouthDiv Project: 0144

Location: Charleston Test Date: 6/3/99 Test Well: FDS01A

#### **AQUIFER DATA**

Saturated Thickness: 41. ft Anisotropy Ratio (Kz/Kr): 1.

#### **OBSERVATION WELL DATA**

Number of observation wells: 1

Observation Well No. 1: FDS01A

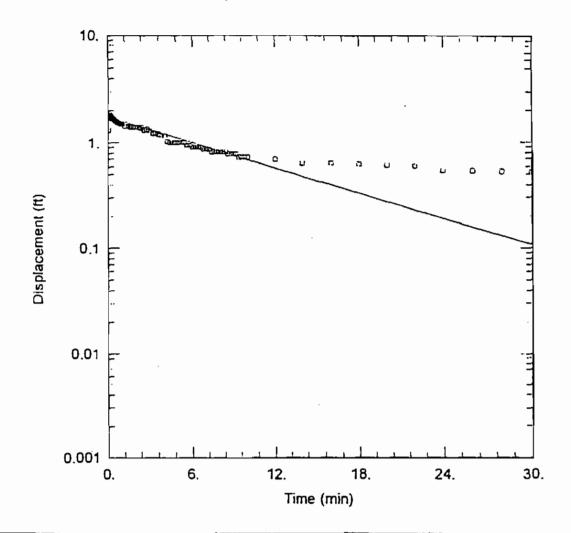
X Location: 0. ft Y Location: 0. ft

No. of observations: 110

	Observation Data								
Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	Time (min)	Displacement (ft)				
0.2	1.325	0.6833	1.018	4.6	0.209				
0,2083	1.306	0.7	1.012	4.8	0.194				
0.2166	1.291	0,7166	1.002	5.	0.181				
0.225	1.288	0.7333	0.996	5.2	0.172				
0.2333	1.278	0.75	0.984	5.4	0.166				
0.2416	1.275	0.7666	0.98	5.6	0.159				
0.25	1.266	0.7833	0.971	5.8	0.153				
0.2583	1.263	0.8	0.968	6.	0.147				
0.2666	1.256	0.8166	0.958	6.2	0.141				
0.275	1.247	0.8333	0.952	6.4	0.141				
0.2833	1.244	0.85	0.943	6.6	0.137				
0.2916	1.237	0.8666	0.94	6.8	0.134				
0.3	1.234	0.8833	0.93	7.	0.131				
0.3083	1.225	0.9	0.924	7.2	0.128				
0.3166	1.222	0.9166	0.918	7.4	0,125				
0.325	1.216	0.9333	0.915	7.6	0,125				
0.3333	1.209	0.95	0.905	7.8	0.125				
D.35	1.2	0.9666	0.899	8.	0.128				

FDS01A Injection

Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	Time (min)	Displacement (ft)
0.3666	1.187	0.9833	0.893	8.2	0.125
0.3833	1.175	1.	0.886	8,4	0.125
0.4	1.165	1.2	0.814	8.6	0.122
0.4166	1.156	1.4	0.748	8.8	0.125
0.4333	1.147	1.6	0,692	9.	0.122
0.45	1.137	1.8	0,639	9.2	0.125
0.4666	1.125	2.	0.595	9.4	0.125
0.4833	1.118	2.2	0.548	9.6	0.125
0.5	1.106	2.4	0.504	9.8	0.125
0.5166	1.096	2.6	0.47	10.	0.122
0.5333	1.09	2.8	0.432	12.	0,128
0.55	1.078	3.	0.401	14.	0,131
0.5666	1.074	3.2	0.369	16.	0,134
0.5833	1.065	3.4	0.341	18.	0.131
0.6	1. <b>05</b> 3	3.6	0,313	20.	0.128
0.6166	1.046	3.8	0,291	22.	0.128
0.6333	1.04	4.	0.266	24.	0.131
0.65	1.034	4.2	0.244	26.	0.125
0.6666	1.024	4.4	0.228		


# SOLUTION

Aquifer Model: Unconfined olution Method: Hvorslev

# VISUAL ESTIMATION RESULTS

# **Estimated Parameters**

Parameter	Estimate	
K	0.002708	ft/min
y0	1,503	ft



# FDS01A WITHDRAWAL

Data Set: C:\TEMP\CHARLE~1\1-11A.AQT

Date: <u>06/21/99</u>

Time: <u>09:39:36</u>

#### PROJECT INFORMATION

Company: <u>EnSafe</u> Client: <u>SouthDiv</u> Project: 0144

Test Location: Charleston

Test Well: FDS01A Test Date: 6/3/99

## AQUIFER DATA

Saturated Thickness: 41. ft Anisotropy Ratio (Kz/Kr): 1.

#### WELL DATA

Initial Displacement: 1.325 ft Casing Radius: 0.0833 ft Screen Length: 10. ft Water Column Height: 4.64 ft Wellbore Radius: 0.333 ft Gravel Pack Porosity: 0.3

#### SOLUTION

Aquifer Model: Unconfined

K = 0.0006018 ft/min

FDS01A Withdrawal

Tita Set: C:\TEMP\CHARLE~1\1-11A.AQT

e: FDS01A Withdrawal

Date: 06/21/99 Time: 14:36:12

#### PROJECT INFORMATION

Company: EnSafe Client: SouthDiv Project: 0144

Location: Charleston Test Date: 6/3/99 Test Well: FDS01A

#### **AQUIFER DATA**

Saturated Thickness: 41. ft Anisotropy Ratio (Kz/Kr): 1.

#### **OBSERVATION WELL DATA**

Number of observation wells: 1

Observation Well No. 1: FDS01A

X Location: 0, ft Y Location: 0, ft

No. of observations: 131

		Observ	ration Data		
Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	Time (min)	Displacement (ft)
0.0416	1.863	0.4833	1.622	3.6	1.199
0.05	1.857	0.5	1.616	3.8	1,165
0.0583	1.838	0.5166	1.606	4.	1.165
0.0666	1.838	0.5333	1.603	4.2	1.027
0.075	1.835	0.55	1.597	4.4	1.011
0.0833	1.829	0.5666	1.591	4.6	1.011
0.0916	1.819	0.5833	1.585	4.8	1.008
0.1	1.816	0.6	1.578	5.	1.005
0.1083	1.81	0.6166	1.575	5.2	1.005
0.1166	1.81	0.6333	1.569	5.4	1.005
0.125	1.794	0.65	1.566	5.6	0.949
0.1333	1.791	0.6666	1.56	5.8	0.949
0.1416	1.788	0.6833	1,556	6.	0.911
0.15	1.779	0.7	1.55	6.2	0.908
0.1583	1.776	0.7166	1.544	6.4	0.908
0.1666	1.769	0.7333	1.544	6.6	0.908
0.175	1.763	0.75	1.538	6.8	0.87
0.1833	1.76	0.7666	1.531	7.	0.87

#### FDS01A Withdrawal

Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	
0,1916	1.76	0.7833	1.531	7.2	0.87	
0.2	1.751	0.8	1.525	7.4	0.823	
0.2083	1.744	0.8166	1.522	7.6	0.823	
0.2166	1.741	0.8333	1.519	7.8	0.823	
0.225	1.735	0.85	1.513	8.	0.82	
0.2333	1.729	0.8666	1.513	8.2	0.82	
0.2416	1.729	0.8833	1.509	8.4	0.82	
0.25	1.725	0.9	1.503	8.6	0.786	
0.2583	1.719	0.9166	1.5	8.8	0.783	
0.2666	1.713	0.9333	1.5	9.	0.78	
0.275	1,71	0.95	1.494	9.2	0.78	
0.2833	1.704	0.9666	1.491	9.4	0.733	
0.2916	1.7	0.9833	1.491	9.6	0.733	
0.3	1.697	1.	1.487	9.8	0.729	
0.3083	1.694	1.2	1.45	10.	0.733	
0.3166	1.691	1.4	1.428	12.	0.698	
0.325	1.688	1.6	1.412	14.	0.642	
0.3333	1.682	1.8	1.403	16.	0.636	
0.35	1.675	2.	1.4	18.	0.626	
0.3666	1.666	2.2	1.394	20.	0.617	
0.3833	1.657	2.4	1.39	<b>22</b> .	0.604	
0.4	1.65	2.6	1.334	24.	0.545	
0.4166	1.647	2.8	1.334	<b>2</b> 6.	0.538	
0.4333	1.641	3.	1.284	28.	0.532	
0.45	1.635	3.2	1.231	30.	0.523	
0.4666	1.632	3.4	1.231			

# SOLUTION

Aquifer Model: Uncomfined Solution Method: Hvorslev

# VISUAL ESTIMATION RESULTS

# **Estimated Parameters**

<u>Parameter</u>	Estimate	
K	0.0006018	ft/min
y0	1.752	ft

# APPENDIX F RBCA CALCULATIONS

# IN-SITU SOIL RISK EVALUATION

SOUTH CAROLINA  Department of Health and Environmental Control (DHEC)							
Site Data					<del></del>		
SITE ID # FACILITY NAME STREET ADDRESS	Site 4, Building 640 Charleston Naval C		Columbia n Charleston, S	С			
Soil Risk Evaluation	n Data						
TPH Soil % SAND (Estimated Soil % CLAY (Estimated Worst Case Soil Analyses	•	86 6 0.9	mg/kg % % mg/kg mg/kg mg/kg mg/kg mg/kg	Cs Cs Cs Cs	<u>Figure</u>		
Natural Organic Carbon Average Annual Rechard Distance from highest Solumpact to water table Bulk Density of Soil Wetting Front Suction Soil Hydraulic Conductive Porosity Residual Water Content	ge oil ⁄ity	25 31 1.7 -10 5.60E-03 0.45		Cs foc Hw L Bd Hf Kf $\Phi$ Wr	1 2 3 4 5		
List possible human exp Soil leaching to groundw	•		nal use of shallo	ow groundwate	er.		

Page 1 of 6 Pages

IN-SITU SOIL RISK EVALUATION

# SOIL LEACHABILITY MODEL FOR BENZENE RISK-BASED CORRECTIVE ACTION FOR PETROLEUM RELEASES

#### SITE INFORMATION:

#### REFERENCES:

- (1) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 1.
- (2) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Table 2.
- (3) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Input Parameters.
- (4) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Table 1.
- (5) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 2.
- (6) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 3.
- (7) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 4.
- (8) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 5.

#### INPUT:

**COC Chemical of Concern** 

Bd Soil Bulk Density (1)

Crsbl Risk Based Screening Level

Cs Concentration of COC in soil

DAF Dilution/Attenuation Factor (2)

foc Organic Carbon Content in Soil (3)

H' Henry's Law Constant (4)

Hf Wetting front suction head (always negative) (5)

Hw Average Annual Recharge (3)

Kf Soil Hydraulic Conductivity (6)

Koc Soil/Water Partioning Coefficient (2)

L Depth between soil sample with greatest COC concentration to groundwater.

Φ Porosity (7)

t1/2 Blodegradation "half life" (2)

TPH Total Petroleum Hydrocarbons, EPA Method 3550

Wr Residual Water Content (8)

	BENZENE	
g/cm3	1.7	
mg/L	0.15	
mg/kg	0.9	_
unitless	8	$\neg$
mg/kg	8195	_
unitless	0.23	.~
cm	-10	_
cm	25.00	
cm/s	5.60E-03	
ml/g	81	$\Box$
cm_	31	

unitless	0.45	
days	16	
mg/kg	1890	
volume fraction	0.04	

^ 4			ALIC.
·A	ᆫᆫ	LAI	IONS:

Ξq	uation S	et   -	Determine s	oil pore	water	concentration	resulting	from	ph	ysical	partioning	a (	(Cw	).

Step 1 - Calculate the total organic carbon content (fcs) of the soil.

fcs = (foc +TPH/1.724)*1E-6 = ______ decimal %

Step 2 - Calculate the concentration of COC in soil pore water (Cw) directly in contact with the contaminate soil.

 $Cw = Cs^{*}((Wr *1g/cc+Bd)/((Bd*Koc*fcs)+Wr+((ø-Wr)*H'))) = 1.1090$  mg/l

Equation Set II - Determine the velocity of the soil pore water (Vw)

Step 1 - Calculate the air filled porosity (f) in decimal percent.

f = Ø - Wr = 0.41 decimal %

Step 2 - Determine the time for water to percolate through the vadose zone soil (from depth of worst case soil sample to the water table at site).

 $t = (f/Kf)^*(L-((Hw-Hf)^*(In((Hw+L-Hf)/(Hw-Hf))))) = 627$  seconds

Step 3 - Determine the velocity of the water (Vw) in feet per year.

Vw = (L/30.48cm/ft)/(t/31,500,000sec/year) = 50,263 ft/year

Equation Set III - Determine the organic retardation effect (Vc) of the contaminant.

Step 1 - Calculate the soil/water distribution coefficient (Kd) (ml/g) for uncontaminated soil.

Kd = Koc*foc*1E-6 = 0.663795 ml/g

Step 2 - Calculate the retardation effect of natural soil organic matter on COC migration.

Vc = Vw/(1+((Bd*Kd)/ø)) = 14,330 ft/year

Equation Set IV - Determine biodegradation rates and provide final COC concentration (Cf) at depth of concern.

Step 1 - Calculate the time (Tc) in days required for the COC to reach groundwater.

 $Tc = 365 \text{ day/yr}^+((L/30.48cm/ft)/Vc) = 0.03 \text{ days}$ 

Step 2 - Calculate estimated concentration of COC in the soil pore water (Cp) necessary to protect groundwater.

 $Cp = 10^{(\log (Crsbl) + ((Tc/2.3)^{(0.693/t1/2)))} = 0.1502$  mg/l

COC concentration in soil pore water (Cw) is less than concentration necessary to protect groundwater (Cp). Not necessary to calculate SSTL

Equation Set V - Calculate the Site Specific Target Level (SSTL) for the COC in soil.								
Castl for	BENZENE in soil	= Cp*DAF*(((Bd*Koc*fcs)+Wr+(F*'H'''))/(Wr*1g/cc+Bd)) =	0.974917 mg/kg					
PREPARED BY:		 Date						
CHECKED BY:		 Date						

Soil Leachability-18-19 Benzene Summ. 11/19/1999 2:13 PM

	IN-SITU	<b>SOIL RISK EVA</b>	LUATION				
	*********	-					
<b>)</b>		SOUTH CAROLIN					
	Department of He	ealth and Environme	ntal Control (I	DHEC)			
Site Data					-	_	
SITE ID#	0						
FACILITY NAME	Site 4, Building 640						
Instructions							
Provide results, sep	arately, for each constit	uent in the worst ca	se soil analys	is.			
Data							
List Constituent:	BENZENE						
(BTEX, Napth.)							Table
Bioremediation "half	f-life"	16	days	t 1/2			1
Soil/water partitionir	ng coefficient	81	— ml/g	K oc			1
Results	<u> </u>						
					Equation	Step	
					Set		
_				_	361	_	
Total Organic Carbo	-		3 decimal %	f cs	J .	1	
.eachate Concentra	-	1.10	 9 mg/l	C w	1	2	
eachate Concentra Air Filled Porosity	ation	1.10 0.4	9 mg/l 1 decimal %	C w	 	2	
eachate Concentra Air Filled Porosity Infiltration Rate Time	ation	1.10 0.4 62	9 mg/l 1 decimal % 7 seconds	C w f t	 	2 1 2	
eachate Concentra Air Filled Porosity Infiltration Rate Tim Velocity of Water	e .	1.10 0.4 62 50,26	9 mg/l 1 decimal % 7 seconds 3 ft/year	C w f t V w	 	2	
eachate Concentra Air Filled Porosity Infiltration Rate Time Velocity of Water Soil/Water Distributi	e ion Coefficient	1.10 0.4 62 50,26 0.663	9 mg/l 1 decimal % 7 seconds 3 ft/year 8 ml/g	C w f t V w K d	 	2 1 2 3 1	
eachate Concentra Air Filled Porosity Infiltration Rate Tim Velocity of Water Soil/Water Distributi Contaminant Percol	e ion Coefficient lation Rate	1.10 0.4 62 50,26 0.663 14,33	9 mg/l 1 decimal % 7 seconds 3 ft/year 8 ml/g 0 ft/year	C w f t V w	 	2 1 2 3	
eachate Concentral Air Filled Porosity Infiltration Rate Time Velocity of Water Soil/Water Distributi Contaminant Percol Time to Reach Grou	e ion Coefficient lation Rate undwater	1.10 0.4 62 50,26 0.663 14,33	9 mg/l 1 decimal % 7 seconds 3 ft/year 8 ml/g 0 ft/year	Cw f t Vw Kd Vc Tc	 	2 1 2 3 1 2	
eachate Concentra Air Filled Porosity Infiltration Rate Tim Velocity of Water Soil/Water Distributi Contaminant Percol	e ion Coefficient lation Rate undwater hing Groundwater	1.10 0.4 62 50,26 0.663 14,33 0.0	9 mg/l 1 decimal % 7 seconds 3 ft/year 8 ml/g 0 ft/year	C w f t V w K d V c	 	2 1 2 3 1 2	
eachate Concentral Air Filled Porosity Infiltration Rate Time Velocity of Water Soil/Water Distributi Contaminant Percol Time to Reach Ground	e ion Coefficient lation Rate undwater hing Groundwater	1.10 0.4 62 50,26 0.663 14,33 0.0	9 mg/l 1 decimal % 7 seconds 3 ft/year 8 ml/g 0 ft/year 3 days 2 mg/l	Cw f t Vw Kd Vc Tc Cp	                      	2 1 2 3 1 2	
eachate Concentral Air Filled Porosity Infiltration Rate Time Velocity of Water Soil/Water Distributi Contaminant Percole Time to Reach Ground Concentration reach Site Specific Target	e ion Coefficient lation Rate undwater hing Groundwater	1.10 0.4 62 50,26 0.663 14,33 0.0	9 mg/l 1 decimal % 7 seconds 3 ft/year 8 ml/g 0 ft/year 3 days 2 mg/l	Cw f t Vw Kd Vc Tc Cp	                         	2 1 2 3 1 2	
eachate Concentral Air Filled Porosity Infiltration Rate Time Velocity of Water Soil/Water Distributi Contaminant Percol Time to Reach Groun Concentration reach Site Specific Target  Conclusions	e ion Coefficient lation Rate undwater hing Groundwater	1.10 0.4 62 50,26 0.663 14,33 0.0 0.150 0.97	9 mg/l 1 decimal % 7 seconds 3 ft/year 8 ml/g 0 ft/year 3 days 2 mg/l 5 mg/kg	Cw f t Vw Kd Vc Tc Cp	                      	2 1 2 3 1 2	-
eachate Concentral Air Filled Porosity Infiltration Rate Time Velocity of Water Soil/Water Distributi Contaminant Percol Time to Reach Groun Concentration reach Site Specific Target  Conclusions  Does concentration	e ion Coefficient lation Rate undwater hing Groundwater Level	1.10 0.4 62 50,26 0.663 14,33 0.0 0.150 0.97 in soil exceed SSTI ted soil.	9 mg/l 1 decimal % 7 seconds 3 ft/year 8 ml/g 0 ft/year 3 days 2 mg/l 5 mg/kg	Cw f t Vw Kd Vc Tc Cp	I II II III IV V V	2 1 2 3 1 2	-
eachate Concentral Air Filled Porosity Infiltration Rate Time Velocity of Water Soil/Water Distributi Contaminant Percol Time to Reach Groun Concentration reach Site Specific Target  Conclusions  Does concentration	e ion Coefficient lation Rate undwater hing Groundwater Level of chemical of concern	1.10 0.4 62 50,26 0.663 14,33 0.0 0.150 0.97	9 mg/l 1 decimal % 7 seconds 3 ft/year 8 ml/g 0 ft/year 3 days 2 mg/l 5 mg/kg	Cw f t Vw Kd Vc Tc Cp		2 1 2 3 1 2 1 2	·

# IN-SITU SOIL RISK EVALUATION

#### SOIL LEACHABILITY MODEL FOR NAPHTHALENE

#### RISK-BASED CORRECTIVE ACTION FOR PETROLEUM RELEASES

#### SITE INFORMATION:

Site: Site 4, Building 640

Location: Charleston Naval Complex, North Charleston, SC

#### REFERENCES:

- (1) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 1.
- (2) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Table 2.
- (3) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Input Parameters.
- (4) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Table 1.
- (5) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 2.
- (6) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 3.
- (7) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 4.
- (8) SCDHEC, RBCA For Petroleum Releases, June 1995, Appendix B, Figure 5.

#### INPUT:

COC	Chemical of Concern		NAPHTHALENE	Ξ
Во	1 Soil Bulk Density (1)	g/cm3	1.7	
Crsb	l Risk Based Screening Level	mg/L	1.63	7-
C	Concentration of COC in soil	mg/kg	7.25	_
DAF	Dilution/Attenuation Factor (2)	unitiess	8	7
foo	: Organic Carbon Content in Soil (3)	mg/kg	8195	
Н	' Henry's Law Constant (4)	unitless	0.002	٦
Н	f Wetting front suction head (always negative) (5)	cm	-10	_
Hv	Average Annual Recharge (3)	cm	25	
K	f Soll Hydraulic Conductivity (6)	cm/s	0.0056	
Ko	: SoilWater Partioning Coefficient (2)	ml/g	1543	7
ı	Depth between soil sample with	cm	31	
	greatest COC concentration to groundwater.			
e	Porosity (7)	unitless	0.45	
t1/2	2 Biodegradation "half life" (2)	days	48	7
TP	l Total Petroleum Hydrocarbons, EPA Method 3550	mg/kg	1890	
W	r Residual Water Content (8)	volume fraction	0.04	

CAL	CU	LAT	ION	IS:

Step 1 - Calculate the total organic carbon content (fcs) of the soil.

fcs = (foc +TPH/1.724)*1E-6 = 0.0093 decimal %

Step 2 - Calculate the concentration of COC in soil pore water (Cw) directly in contact with the contaminate soil.

 $Cw = Cs^*((Wr ^*Ig/cc+Bd)/((Bd^*Koc^*fcs)+Wr+((\emptyset-Wr)^*H'))) = 0.02 mg/l$ 

Equation Set II - Determine the velocity of the soil pore water (Vw)

Step 1 - Calculate the air filled porosity (f) in decimal percent.

f = Ø - Wr = 0.41 decimal %

Step 2 - Determine the time for water to percolate through the vadose zone soil (from depth of worst case soil sample to the water table at site).

 $t = (f/Kf)^*(L-(Hw-Hf))^*(ln(Hw+((L-Hf)/(Hw-Hf)))) = \underline{\qquad \qquad 627 \qquad }$  seconds

Step 3 - Determine the velocity of the water (Vw) in feet per year.

Vw = (L/30.48cm/ft)/(t/31,500,000sec/year) = 50263 ft/year

Equation Set III - Determine the organic retardation effect (Vc) of the contaminant.

Step 1 - Calculate the soil/water distribution coefficient (Kd) (ml/g) for uncontaminated soil.

Kd = Koc*foc*1E-6 = 12.644885 ml/g

Step 2 - Calculate the retardation effect of natural soil organic matter on COC migration.

 $Vc = Vw^*(1+((Bd^*Kd)/ø)) = 1,031$  ft/year

Equation Set IV - Determine biodegradation rates a	and provide final COC concentration (Cf) at depth of concern.		
Step 1 - Calculate the time (Tc) in da	ays required for the COC to reach groundwater.		
	Tc = 365 day/yr*((L/30.48cm/ft)/Vc) =	0.35	days
Step 2 - Calculate estimated concer	ntration of COC in the soil pore water (Cp) necessary to protect	groundwate	эг.
	Cp = 10^(log (Crsbl)+((Tc/2.3)*(0.693/t1/2))) =	1.64	mg/l
COC concents	ration in soil pore water (Cp) is greater than Crsbl, therefore the	SSTL mus	t be calculated.
Equation Set V - Calculate the Site Specific Target	Level (SSTL) for the COC in soil.		
Csstl for APHTHALENE in soil	= Cp*DAF*(((Bd*Koc*fcs)+Wr+(F*'H'''))/(Wr*1g/cc+Bd)) =	183.8952	<u> 1 mg/kg</u>
PREPARED BY:	- Date		
CHECKED BY:	Date		

IN-SITU SC	IL RISK	EVALUATION	NC			
SO Department of Health	OUTH CARO		trol (DHE	.C)		
Site Data		_				
SITE ID # 0 FACILITY NAME Site 4, Building 640			_			
Instructions						
Provide results, separately, for each const	ituent in the	worst case s	oil analy:	sis.		
Data						
List Constituent: NAPHTHALENE (BTEX, Napth.)	_	-				Table
Bioremediation "half-life"	48	days	t 1/2			1
Soil/water partitioning coefficient	1543	ml/g	Koc			1
Results						
	_			Equation Set	Step	
Total Organic Carbon Content		3 decimal %	fcs	I	1	
Leachate Concentration		0 mg/l	C w	1	2	
Air Filled Porosity Infiltration Rate Time		<u>1</u> decimal % 7 seconds	f +	]] 11	1	
Velocity of Water		<u>/</u> seconds 3 ft/year	t Vw	 	2 3	
Soil/Water Distribution Coefficient		<u>5</u> 10 year 4 ml/g	Kd	;;;	1	
Contaminant Percolation Rate		1 ft/year	Vс	111	2	
Time to Reach Groundwater		0 days	Tc	IV	1	
Concentration reaching Groundwater		4 mg/l	C p	IV V	2	
Site Specific Target Level	1 ₈	4 mg/kg	C sstl	V		
Conclusions			•			
Does concentration of chemical of concern	n in soil exc	eed SSTL?		NO		
Risk of Human Exposure due to contamina	ated soil. YES	X		NO		
· <del></del>	_			_	6 of 6	Pages
IN-SITU SC	DIL RISK	EVALUATION	ON			

#### ZONE H, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA SCOHEC UST 10 No. 09868

#### DOMENICO'S DILUTION/ATTENUATION EQUATION FOR GROUNOWATER TRANSPORT

#### Site-Specific Target Level Calculations for Groundwater: Potential Future Off-Site Ingestion (Cooper River)

Parameter Descriptions:	Units	Parameter Descriptions:	Units
POE - Point of Exposure		p _e = Soil Bulk Density	g/cm³
SSTL = Site-Specific Target Level	mg/L	t _{oc} = Fraction Organic Carbon In Soil	g-C/g-soll
SSTL _{BOURGE} = Hydrocarbon Concentration in Plume Source Area protective of RBSLs at POE	mg/L	$\alpha_{\rm X}$ - Longitudinal Disparsivity = 0.2x	m
SSTL _{COMP} = Hydrocarbon Concentration at Compliance Point protective of RBSLs at POE	mg/L	$\alpha_{\rm Y}$ = Transverse Dispossivity = $\alpha_{\rm X}/300$	m
X _{POE} = x = Distance from Plume Source to POE (along Centerline)	m	$a_i$ = Vertical Dispersivity = 1 x 10 ⁻⁶⁶	m
X _{COMP} = x = Distance from POE to Compilance Point (along Centerline)	m	t _{oc} = Organic Carbon Partition Coefficient	cm³-H₂O/g-C
Y = Source Width (Perpendicular to Flow Direction)	m	ko = Soff-Water Sorption Coefficient	cm³-H₂O/g-soll
Z = Source Depth (Perpendicular to Flow Direction in Vertical Plane)	m	V - Pare Water Valority	m/sec
K _s = Seturated Hydraulic Conductivity	m/sec	R _c = Constituent Retendenton Factor	
I = Groundwater Gradient	em/em	V/R _c = Maximum Transport Rate of Dissolved Constituent = (K,j)/(0R _c )	m/sec
θ = Porosity in Saturated Zone	cm³/cm³	RBSL - Risk-Beased Screening Level in Water Provided by SCDHEC (1998)	mg/L

#### Dilution & Attenuation without Biological Decay

Constituent	X _{PGE}	X _{POE}	Y	Z	t	K,	j	0	ρε	α×	αÁ	<u>a</u> 2	fac	k _{oc}	k _D	٧	Rc	C _{POE} /C _{BOURCE}
	ft	m	m	m	88C	m/s-ac	m/m	cm³/cm³	g/cm³	m	m	m	g-C/g-soil	cm³-H ₂ O/g-C	cm³-H ₂ O/g-so	m/sec		
Benzene	200	60.9607	15	2	1.00E+13	1.34E-05	0.0000	0.43	1.54	6.10	2.03	0.30	8.20E-03	B1	0.8642	2.49E-07	3.379	9.419E-02
Toluene	200	60.9607	15	2	1.00E+13	1.34£-05	0.0080	0.43	1.54	6.10	2.03	0.30	B.20E-03	133	1.0906	2.49E-07	4.906	9.419E-02
Naphthalene	200	60.9607	15	2	1.00E+13	1.34£-05	0.0080	0.43	1.54	6.10	2.03	0.30	B.20E-03	1543	12.6526	2.49E-07	48.314	9.419E-02

Constituent	X _{COMP}	Xcomp	<u> </u>	Z	t	K,	- 1	Ð	Рв	αx	Œγ	a _z	foc	koc	k _o	V	R _c	C _{POE} /C _{COMP}
	ft	m	т	m	98C	m/sec	m/m	em³/cm³	g/cm ³	m	m	m	g-C/g-soil	cm ³ -H ₂ O/g-C	cm ³ ·H ₂ O/g·so	m/sec		
Benzene	150	45.7206	15	2	1.00E+12	1.346-05	0.008	0.43	1.54	4.57	1.52	0.23	8.20E-03	B1	0.6842	2.49E-07	3.379	1.606E-01
Toluene	150	45.7206	15	2	1.00E+13	1.34E-05	0.008	0.43	1.54	4.57	1.52	0.23	8.20E-03	133	1.0906	2.49E-07	4.906	1.606E-01
Naphthalene	150	45.7206	15	2	1.00E+13	1.348-05	0.008	0.43	1.54	4.57	1.52	0.23	B.20E-03	1543	12.6526	2.49E-07	46.314	1.606E-01

Source: South Carolina Department of Health and Environmental Control (SCDHEC) 1998. Risk-Based Corrective Action for Patroleum Refeases, Bureau of Underground Storage Tank Management.

#### DOMENICO DILUTION/ATTENUATION MODEL WITHOUT BIOLOGICAL DECAY

$$\frac{C_X}{C_{SOURCE}} = \frac{1}{2} erfc \left[ \frac{\left(x - \frac{vt}{R_c}\right)}{2\sqrt{\alpha_X \frac{vt}{R_c}}} \right] \times erf \left[ \frac{Y}{4\sqrt{\alpha_Y x}} \right] \times erf \left[ \frac{Z}{2\sqrt{\alpha_Z x}} \right]$$

Constituent	POE RBSL	SSTL	SSTL _{COMP}
	mg/L	mg/L	mg/L
Benzene	D.005	0.053 ~	0.031
Toluene	1.000	10.617	6.ZZ8
Naphthalene	0.010	0.106	0.062

#### ZONE H, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

#### DOMENICO'S OILUTION/ATTENUATION EQUATION FOR GROUNOWATER TRANSPORT

#### Predicted 10-year Migration of Constituents in Groundwater

Perameter Descriptions:	Units	Parameter Descriptions:	Units
POE = Point of Exposure		ρ _s - Sofi Bulk Density	g/cm³
SSTL = She-Specific Target Level	mg/L	f _{ac} = Fraction Organic Carbon in Soil	g-C/g-soli
SSTL _{eomer} = Hydrocerbon Concentration in Plume Source Area protective of RBSLs at FOE	mg/L	$a_x$ = Longitudinal Disparaivity = $x/10$	m
SSTL _{COMP} = Hydrocarbon Concentration at Compliance Point protective of RBSLx at POE	mg/L	$a_y$ = Treneverse Dispersivity = $a_x/3$	m
X _{POS} = x = Distance from Plume Source to POE (along Centerline)	пħ	$a_2$ = Vertical Dispersivity = $a_x/20$	m
X _{COMP} = x = Distance from POE to Compliance Point (along Centerline)	m	k _{oc} = Organic Carbon Partition Costficient	cm³-H₂O/g-C
Y - Source Width (Perpendicular to Flow Direction)	m	ko > Soll-Weter Sorption Coefficient	sm³-H₂O/g-⊪oñ
Z = Source Depth (Perpendicular to Flow Olrection in Vertical Plane)	m	V = Pore Water Velocity	m/sec
Ks - Saturated Hydraulic Conductivity	m/sec	R _C = Constituent Reterdation Fector	
i = Groundwater Gradient	cm/cm	V/R _c = Maximum Transport Rate of Dissolved Constituent = (K,i)/(8R _c )	m/eec
θ = Porosity in Seturated Zone	cm³/cm³	RBSL - Risk-Based Screening Level in Water Provided by SCDHEC (1998)	mg /L

#### Dilution & Attenuation without Biological Decay

Constituent	X _{POE}	X _{PGE}	Y	Z	t	Ks	i	θ	ρ ₅	α _X	Œ	αz	foc	k _{oc}	k _o		Rc	CPOE/CSOLINCE
	ft	m	m	m	990	m/sec	m/m	m³/cm	g/cm ³	m	m	m	g-C/g-soil	cm³-H ₂ O/g-C	cm³-H ₂ O/g-soil	m/sec	_	
Benzene	140	42.6725	15	2	3.15E+08	1,34E-06	0.0080	0.43	1.54	4.27	1.42	0.21	8.20E-03	81	0.864Z	2.49E-07	3.379	1.532E-02
Toluene	63	19,2026	15	Z	3.15E+08	1.34E-0!5	0.0080	0.43	1.54	1.92	0.64	0.10	8.20E-03	133	1.0908	2.49E-07	4.906	2.094E-01
Naphthalene	22.2	6.78684	15	2	3.15E+08	1,34E-05	0.0060	0.43	1.54	0,68	0.Z3	0.03	8.20E-03	1543	12.6526	2.49E-07	48.314	4.110E-04

Source: South Carolina Department of Health and Environmental Control (SCDHEC) 1998. Risk-Based Corrective Action for Patroleum Releasus, Bureau of Underground Storage Tank Management.

DOMENICO OILUTION/ATTENUATION MODEL WITHOUT BIOLOGICAL DECAY

$$\frac{C_X}{C_{SOURCE}} = \frac{1}{2} erfc \left[ \frac{\left(x - \frac{vt}{R_c}\right)}{2\sqrt{\alpha_X \frac{vt}{R_c}}} \right] \times erf \left[ \frac{Y}{4\sqrt{\alpha_Y x}} \right] \times erf \left[ \frac{Z}{2\sqrt{\alpha_Z x}} \right]$$

Constituent	C _{SOURCE} mg/L	C _X mg/L
Benzene	0.313	0.005
Toluene	4.646	0.973
Naphthalene	23.346	0.010

Prepared By	<b>/</b> :	

Reviewed	By:					
----------	-----	--	--	--	--	--

# ZONE H, CHARLESTON NAVAL COMPLEX NORTH CHARLESTON, SOUTH CAROLINA

#### DOMENICO'S DILUTION/ATTENUATION EQUATION FOR GROUNDWATER TRANSPORT

#### Predicted 20-year Migration of Constituents in Groundweter

Parameter Descriptions:	Unite	Parameter Descriptions:	Unita
POE = Point of Exposure		ρ _s = Soil Buik Density	g/cm³
SSTL = Site-Specific Target Level	mg/L	foc = Fraction Organic Carbon in Soli	g-C/g-soil
SSTL _{source} = Mydrocerbon Concentration in Plume Source Area protective of RBSLs at POE	mg/L	α _x = Longitudinal Disparalyhy = x/10	ın
SSTL _{comp} = Hydrocarbon Concentration at Compliance Point protective of RBSLs at POE	mg/L	$\alpha_{\gamma} = \text{Transverse Disparativity} = \alpha_{\chi}/3$	rn
X _{eog} - x - Distance from Plume Source to POE (along Centerline)	m	$\alpha_2$ = Vertical Disperaivity = $\alpha_{\pi}/20$	rn
Kome - K - Distance from POE to Compliance Point (along Centerline)	m	k _{oc} = Organic Carbon Partition Coefficient	em²-H ₂ O/g-C
Y = Source Width (Perpendicular to Flow Direction)	m	k _p = Soil-Water Sorption Coafficient	çm²-H₂O/g-sofi
Z - Source Depth (Perpendicular to Flow Direction in Vertical Plane)	m	V - Pora Water Velocity	m/sec
Ks - Seturated Hydraulic Conductivity	m/aec	R _c = Constituent Retardation Factor	
I = Groundwater Gradient	cm/cm	V/R _c = Meximum Transport Rate of Dissolved Constituent = (K,J)/(6R _c )	m/sec
$\theta$ = Porosity in Saturated Zone	em³/em²	RBSL = Risk-Based Screening Level in Water Provided by SCDHEC (1998)	mg/L

#### Offution & Attenuation without Biological Decay

Constituent	X _{POE}	X _{POE}	Υ	Z	t	Ks	ı	θ	ρ8	αx	αγ	αz	foc	koc	k _D	v	R _c	C _{POE} /C _{SOURCE}
	ft	m	m	m	98C	m/sec	m/m	m³/cm	3g/cm3	m	m	m	g-C/g-soil	cm³-H ₂ O/g-C	cm³-H ₂ O/g-sail	m/sec		
																		,
Benzene	220	67.0568	15	2	6.31E+08	1.34E-05	0800.0	0,43	1.54	6.71	2.24	0.34	B.20E-03	81	0.6642	2.49E-07	3.379	1.617E-02
Toluene	94	28.6515	15	2	6.31E+08	1.34E-05	0.0080	0.43	1.54	2.87	0.96	0.14	8.20E-03	133	1.0906	2.49E-07	4.906	2.126E-01
Naphthalene	43.4	13.2285	15	2	6.31E+08	1.34E-05	0.0080	0.43	1.54	1.32	0.44	0.07	8.20E-03	1543	12.6526	2.49E-07	46.314	4.370E-04

Source: South Caroline Department of Health and Environmental Control (SCOHEC) 1995. Risk-Based Corrective Action for Petroleum Relieues, Bureau of Underground Storage Tank Management.

DOMENICO DILUTION/ATTENUATION MODEL WITHOUT BIOLOGICAL OECAY

$\frac{C_X}{C_{SOURCE}} = \frac{1}{2}erfc$	<b>h</b> '   \	$erf\left[\frac{Y}{4\sqrt{\alpha_{\gamma}x}}\right] \times erf\left[\frac{Y}{4\sqrt{\alpha_{\gamma}x}}\right]$	
--------------------------------------------	----------------	----------------------------------------------------------------------------------------------------------------	--

Constituent	CSOURCE	Cx
	mg/L	mg/L
Benzene	0.313	0.005
Toluene	4.646	0.988
Naphthalene	23.346	0.010

Prepared By: _		

Reviewed	By:_		